• 제목/요약/키워드: Data Clustering

검색결과 2,747건 처리시간 0.038초

Combined Artificial Bee Colony for Data Clustering (융합 인공벌군집 데이터 클러스터링 방법)

  • Kang, Bum-Su;Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제40권4호
    • /
    • pp.203-210
    • /
    • 2017
  • Data clustering is one of the most difficult and challenging problems and can be formally considered as a particular kind of NP-hard grouping problems. The K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, it has high possibility to trap in local optimum and high variation of solutions with different initials for the large data set. Therefore, we need study efficient computational intelligence method to find the global optimal solution in data clustering problem within limited computational time. The objective of this paper is to propose a combined artificial bee colony (CABC) with K-means for initialization and finalization to find optimal solution that is effective on data clustering optimization problem. The artificial bee colony (ABC) is an algorithm motivated by the intelligent behavior exhibited by honeybees when searching for food. The performance of ABC is better than or similar to other population-based algorithms with the added advantage of employing fewer control parameters. Our proposed CABC method is able to provide near optimal solution within reasonable time to balance the converged and diversified searches. In this paper, the experiment and analysis of clustering problems demonstrate that CABC is a competitive approach comparing to previous partitioning approaches in satisfactory results with respect to solution quality. We validate the performance of CABC using Iris, Wine, Glass, Vowel, and Cloud UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KABCK (K-means+ABC+K-means) is better than ABCK (ABC+K-means), KABC (K-means+ABC), ABC, and K-means in our simulations.

Microarray data analysis using relative hierarchical clustering (상대적 계층적 군집 방법을 이용한 마이크로어레이 자료의 군집분석)

  • Woo, Sook Young;Lee, Jae Won;Jhun, Myoungshic
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권5호
    • /
    • pp.999-1009
    • /
    • 2014
  • Hierarchical clustering analysis helps easily exploring massive microarray data and understanding biological phenomena with dendrogram. But, because hierarchical clustering algorithms only consider the absolute similarity, it is difficult to illustrate a relative dissimilarity, which consider not only the distance between a pair of clusters, but also how distant are they from the rest of the clusters. In this study, we introduced the relative hierarchical clustering method proposed by Mollineda and Vidal (2000) and compared hierarchical clustering method and relative hierarchical method using the simulated data and the real data in the various situations. The evaluation of the quality of two hierarchical methods was performed using percentage of incorrectly grouped points (PIGP), homogeneity and separation.

An Efficient Large Graph Clustering Technique based on Min-Hash (Min-Hash를 이용한 효율적인 대용량 그래프 클러스터링 기법)

  • Lee, Seok-Joo;Min, Jun-Ki
    • Journal of KIISE
    • /
    • 제43권3호
    • /
    • pp.380-388
    • /
    • 2016
  • Graph clustering is widely used to analyze a graph and identify the properties of a graph by generating clusters consisting of similar vertices. Recently, large graph data is generated in diverse applications such as Social Network Services (SNS), the World Wide Web (WWW), and telephone networks. Therefore, the importance of graph clustering algorithms that process large graph data efficiently becomes increased. In this paper, we propose an effective clustering algorithm which generates clusters for large graph data efficiently. Our proposed algorithm effectively estimates similarities between clusters in graph data using Min-Hash and constructs clusters according to the computed similarities. In our experiment with real-world data sets, we demonstrate the efficiency of our proposed algorithm by comparing with existing algorithms.

Fuzzy Clustering Model using Principal Components Analysis and Naive Bayesian Classifier (주성분 분석과 나이브 베이지안 분류기를 이용한 퍼지 군집화 모형)

  • Jun, Sung-Hae
    • The KIPS Transactions:PartB
    • /
    • 제11B권4호
    • /
    • pp.485-490
    • /
    • 2004
  • In data representation, the clustering performs a grouping process which combines given data into some similar clusters. The various similarity measures have been used in many researches. But, the validity of clustering results is subjective and ambiguous, because of difficulty and shortage about objective criterion of clustering. The fuzzy clustering provides a good method for subjective clustering problems. It performs clustering through the similarity matrix which has fuzzy membership value for assigning each object. In this paper, for objective fuzzy clustering, the clustering algorithm which joins principal components analysis as a dimension reduction model with bayesian learning as a statistical learning theory. For performance evaluation of proposed algorithm, Iris and Glass identification data from UCI Machine Learning repository are used. The experimental results shows a happy outcome of proposed model.

Metastasis Related Gene Exploration Using TwoStep Clustering for Medulloblastoma Microarray Data

  • Ban, Sung-Su;Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.153-159
    • /
    • 2005
  • Microarray gene expression technology has applications that could refine diagnosis and therapeutic monitoring as well as improve disease prevention through risk assessment and early detection. Especially, microarray expression data can provide important information regarding specific genes related with metastasis through an appropriate analysis. Various methods for clustering analysis microarray data have been introduced so far. We used twostep clustering fot ascertain metastasis related gene through t-test. Through t-test between two groups for two publicly available medulloblastoma microarray data sets, we intended to find significant gene for metastasis. The paper describes the process in detail showing how the process is applied to clustering analysis and t-test for microarray datasets and how the metastasis-associated genes are explorated.

  • PDF

Clustering Algorithm Using Hashing in Classification of Multispectral Satellite Images

  • Park, Sung-Hee;Kim, Hwang-Soo;Kim, Young-Sup
    • Korean Journal of Remote Sensing
    • /
    • 제16권2호
    • /
    • pp.145-156
    • /
    • 2000
  • Clustering is the process of partitioning a data set into meaningful clusters. As the data to process increase, a laster algorithm is required than ever. In this paper, we propose a clustering algorithm to partition a multispectral remotely sensed image data set into several clusters using a hash search algorithm. The processing time of our algorithm is compared with that of clusters algorithm using other speed-up concepts. The experiment results are compared with respect to the number of bands, the number of clusters and the size of data. It is also showed that the processing time of our algorithm is shorter than that of cluster algorithms using other speed-up concepts when the size of data is relatively large.

Spectral clustering based on the local similarity measure of shared neighbors

  • Cao, Zongqi;Chen, Hongjia;Wang, Xiang
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.769-779
    • /
    • 2022
  • Spectral clustering has become a typical and efficient clustering method used in a variety of applications. The critical step of spectral clustering is the similarity measurement, which largely determines the performance of the spectral clustering method. In this paper, we propose a novel spectral clustering algorithm based on the local similarity measure of shared neighbors. This similarity measurement exploits the local density information between data points based on the weight of the shared neighbors in a directed k-nearest neighbor graph with only one parameter k, that is, the number of nearest neighbors. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed algorithm outperforms other existing spectral clustering algorithms in terms of the clustering performance measured via the normalized mutual information, clustering accuracy, and F-measure. As an example, the proposed method can provide an improvement of 15.82% in the clustering performance for the Soybean dataset.

Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

  • Lee, Hansung;Yoo, Jang-Hee;Park, Daihee
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.333-342
    • /
    • 2014
  • Most hyper-ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm, and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.

Data Clustering Using Hybrid Neural Network

  • Guan, Donghai;Gavrilov, Andrey;Yuan, Weiwei;Lee, Sung-Young;Lee, Young-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.457-458
    • /
    • 2007
  • Clustering plays an indispensable role for data analysis. Many clustering algorithms have been developed. However, most of them suffer poor performance of learning. To archive good clustering performance, we develop a hybrid neural network model. It is the combination of Multi-Layer Perceptron (MLP) and Adaptive Resonance Theory 2 (ART2). It inherits two distinct advantages of stability and plasticity from ART2. Meanwhile, by combining the merits of MLP, it improves the performance for clustering. Experiment results show that our model can be used for clustering with promising performance.

  • PDF

Efficient Triphone Clustering Using Monophone Distance (모노폰 거리를 이용한 트라이폰 클러스터링 방법 연구)

  • Bang Kyu-Seop;Yook Dong-Suk
    • Proceedings of the KSPS conference
    • /
    • 대한음성학회 2006년도 춘계 학술대회 발표논문집
    • /
    • pp.41-44
    • /
    • 2006
  • The purpose of state tying is to reduce the number of models and to use relatively reliable output probability distributions. There are two approaches: one is top down clustering and the other is bottom up clustering. For seen data, the performance of bottom up approach is better than that of top down approach. In this paper, we propose a new clustering technique that can enhance the undertrained triphone clustering performance. The basic idea is to tie unreliable triphones before clustering. An unreliable triphone is the one that appears in the training data too infrequently to train the model accurately. We propose to use monophone distance to preprocess these unreliable triphones. It has been shown in a pilot experiment that the proposed method reduces the error rate significantly.

  • PDF