• Title/Summary/Keyword: Data Binding

Search Result 887, Processing Time 0.024 seconds

Structures of Zymomonas 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase with and without a Substrate Analog at the Phosphate-Binding Loop

  • Seo, Pil-Won;Ryu, Ho-Chang;Gu, Do-Heon;Park, Hee-Sae;Park, Suk-Youl;Kim, Jeong-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1339-1345
    • /
    • 2018
  • 2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, which catalyzes aldol cleavage and condensation reactions, has two distinct substrate-binding sites. The substrate-binding mode at the catalytic site and Schiff-base formation have been well studied. However, structural information on the phosphate-binding loop (P-loop) is limited. Zymomonas mobilis KDPG aldolase is one of the aldolases with a wide substrate spectrum. Its structure in complex with the substrate-mimicking 3-phosphoglycerate (3PG) shows that the phosphate moiety of 3PG interacts with the P-loop and a nearby conserved serine residue. 3PG-binding to the P-loop replaces water molecules aligned from the P-loop to the catalytic site, as observed in the apostructure. The extra electron density near the P-loop and comparison with other aldolases suggest the diversity and flexibility of the serine-containing loop among KDPG aldolases. These structural data may help to understand the substrate-binding mode and the broad substrate specificity of the Zymomonas KDPG aldolase.

Effects of Waterborne Iron on Serum Iron Concentration and Iron Binding Capacity of Olive Flounder (Paralichthys olivaceus)

  • Jee Jung-Hoon;Kim Seong-Gil;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • Olive flounder (Paralichthys olivaceus) was exposed to waterborne iron (0.1, 0.5, 1, 5 and 10 mg/L) for 50 days. The effects of iron on blood iron status and iron binding capacity were studied. The serum iron concentration was significantly higher than in the group exposed to iron (1, 5 and 10 mg/L) in comparison to the control after 30 days of exposure to iron. A significant decrease in unsaturated iron binding capacity was found between the control and the group exposed to iron (5 and 10 mg/L, respectively) at 40 and 50 days, respectively. The total iron binding capacity of serum in the fish exposed to iron concentrations (5 and 10 mg/L) showed a significant decrease compared to that of the control at 40 days after iron exposure. Serum iron saturation values increased in the flounder exposed to iron concentration (5 and 10 mg/L) at 50 days. Our data suggest that sub-lethal exposure of waterborne iron alters the blood iron concentration and iron binding capacity, and these parameters seems to be valuable factors for screening and diagnosis of iron overload syndromes in fish.

Identification of binding motifs for skeletal ryanodine receptor and triadin

  • Lee, Jae-Man;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.66-66
    • /
    • 2003
  • In skeletal muscle cells, depolarization of the transverse tubules (T-tubules) results in Ca$\^$2+/ release from the sarcoplasmic reticulum (SR), leading to elevated cytoplasmic Ca$\^$2+/ and muscle contraction. This process has been known as excitation-contraction coupling (E-C coupling). Several proteins, such as the ryanodine receptor (RyR), triadin, junctin, and calsequestrin (CSQ), have been identified to be involved in the Ca$\^$2+/ release process. However, the molecular interactions between the SR proteins have not been resolved. In the present study, the mechanisms of interaction between RyRl and triadin have been studied by in vitro protein binding and $\^$45/Ca$\^$2+/ overlay assays. Our data demonstrate that the intraluminal loop II of RyR1 binds to triadin in Ca$\^$2+/-independent manner. Moreover, we could not find any Ca$\^$2+/ binding sites in the loop II region. GST-pull down assay revealed that a KEKE motif of triadin, which was previously identified as a CSQ binding site (Kobayasi et al.,2000 JBC) was also a binding site for RyR1. Our results suggest that the intraluminal loop II of RyR could participate in the RyR-mediated Ca$\^$2+/ release process by offering a direct binding site to luminal triadin.

  • PDF

Effect of Ginseng Saponin on the Activity, Phosphorylation, $[^3H]$Ouabain Binding of Purified$Na^+$ $K^+$-ATPase Isolated from the Outer Medulla of Sheep Kidney (인삼 Saponin이 양신장에서 정제한 $Na^+$ $K^+$-ATPase의 활성, 인산화 및 $[^3H]$Ouabain결합에 미치는 영향)

  • 이신웅;이정수;진갑덕
    • YAKHAK HOEJI
    • /
    • v.29 no.2
    • /
    • pp.76-89
    • /
    • 1985
  • The effects of ginseng saponin on the activity, phosphorylation, [$^{3}$H] ouabain binding and light scattering (disruption) of purified $Na^{+}$ ,$K^{+}$ -ATPase isolated from the outer medulla of sheep kidney were compared to those of gypsophila saponin, sodium dodecylsulfate (SDS), and Triton X-100 on the same parameters. $Na^{+}$ , $K^{+}$ -ATPase activity, phosphorylation, and [$^{3}H$] ouabain binding were inhibited by ginseng saponin (triol>total>diol), SDS, or Triton X-100, but increased by gypsophila saponin. Low doses of ginseng saponin (3.mu.g saponin/.mu.g protein) decreased phosphorylation sites and ouabain binding site concentration (Bmax) without any change of turnover number and affinity for ouabain binding which were decreased by high dose of ginseng saponin (over 10.mu.g saponin/.mu.g protein), SDS or Triton X-100. On the other hand, gypsophila saponin increased the affinity without any change of Bmax for ouabain binding. Inhibition of $Na^{+}$ ,$K^{+}$ -ATPase activity by ginseng saponin and SDS or Triton X-100 appeared before and after decrease in light scattering, respectively. These data suggest that ginseng saponins (total, diol, triol saponin) inhibit $Na^{+}$ , $K^{+}$ -ATPase activity by specific direct and general detergent action at low and high concentrations, respectively, and this inhibitory action of ginseng sapornin to $Na^{+}$ , $K^{+}$ -ATPase is not general action of all saponins.

  • PDF

Sensory Adaptation in Polar Auxin Transport System to Naphtylphthalamic Acid in Corn Coleoptile Segments (옥수수(Zea mays L.) 자엽초 절편에서 Naphtylphthalamic Acid에 대한 오옥신 이동계의 감지적응)

  • 윤인선
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.317-323
    • /
    • 1991
  • Partial recovery in auxin transport capacity from inhibition by N-naphthylphthalamic acid (NPA) was observed when corn coleoptile segments were subjected to a prolonged NPA treatment. Kinetic data indicated that the recovery time is a function of the concentration of NPA applied. Desensitization to NPA was also seen in tissue slices where NPA increased net uptake of auxin, indicating that the apparant adaptation in the auxin transport system did not results possibly from auxin accumulated during transport inhibition. Studies on in vitro binding of NPA to membrane vesicles isolated from the coleoptile indicated that preincubation of the tissue with NPA resulted in the reduced binding activity. Scatchard analysis of the data indicated that this was due to decreases in the number of NPA binding sites. The possibility of causal relationship of modified NPA receptors to the sensory adaptation in auxin transport observed in coleoptile segments will be discussed.

  • PDF

Spectroscopic Studies on the Mechanism of Interaction of Vitamin $B_{12}$ with Bovine Serum Albumin

  • Kamat, B.P.;Seetharamappa, J.
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • The mechanism of interaction of cyanocobalamin (CB) with bovine serum albumin (BSA) has been investigated by spectrofluorometric and circular dichroism methods. Association constant for the CB-BSA system showed that the interaction is non-covalent in nature. Binding studies in the presence of an hydrophobic probe, 8-anilino-l-naphthalene sulphonic acid, sodium salt (ANS) showed that there is hydrophobic interaction between CB and ANS and they do not share common sites in BSA. Stern-Volmer analysis of fluorescence quenching data showed that the fraction of fluorophore (protein) accessible to the quencher (CB) was close to unity indicating thereby that both tryptophan residues of BSA are involved in drug-protein interaction. The rate constant for quenching, greater than $10^{10}$ $M^{-1}$ $s^{-1}$, indicated that the drug binding site is in close proximity to tryptophan residue of BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of CB to BSA involves hydrophobic bonds predominantly. Significant increase in concentration of free drug was observed for CB in presence of paracetamol. Circular dichroism studies revealed the change in helicity of BSA due to binding of CB to BSA.

  • PDF

Biochemical characterization of the lipid-binding properties of a broccoli cuticular wax-associated protein, WAX9D, and its application

  • Ahn, Sun-Young;Kim, Jong-Min;Pyee, Jae-Ho;Park, Heon-Yong
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.367-372
    • /
    • 2009
  • In this study, we showed that WAX9D, a nonspecific lipid-transfer protein found in broccoli, binds palmitate (C16) and stearate (C18) with dissociation constants of 0.56 ${\mu}M$ and 0.52 ${\mu}M$, respectively. WAX9D was fused to thioredoxin protein by genetic manipulation to enhance its solubility. The data revealed strong interaction of Trx-WAX9D with palmitate and stearate. The dissociation constants of Trx-WAX9D for palmitate and stearate were 1.1 ${\mu}M$ and 6.4 ${\mu}M$, respectively. The calculated number of binding sites for palmitate and stearate was 2.5 to 2.7, indicating that Trx-WAX9D can bind three molecules of fatty acids. Additionally, Trx-WAX9D was shown to inhibit the apoptotic effect of palmitate in endothelial cells. Our data using Trx-WAX9D provide insight into the broad spectrum of its biological applications with specific palmitate binding.

Ethanol-induced Activiationof Transcription Factor NF-$\kappa$B and AP-1 in C6 Glial Cells

  • Park, Jae -Won;Shim, Young-Sup
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • In this study, the effectof ethanol and acetaldehyde on DNA binding activities of NF-$textsc{k}$B and AP-1 were evaluated in C6 rat glial cells. Both NF-$textsc{k}$B and AP-1 are important transcription factors for the expression of various cytokines in glial cells. Our data showed that neither ethanol nor acetaldehyde induced conspicuous cell death of C6 cells at clinically realistic concentrations. When the DNA binding activities of nuclear NF-$textsc{k}$B and AP-1 were estimated using electrophoretic mobility shift assay (EMSA), ethanol(0.3%) or acetaldehyde(1mM) induced transient activation of these transcription factors, which attained peak levels at 4~8 hours and declined to basal levels at 12 hours after treatement . The supershift analysis showed that the increased activities of NF-$textsc{k}$B in ethanol/acetaldehyde-treated C6 cells were due to the preferential induction of p65/p50 heterodimer complex. The DNA binding activities of these transcriptional factors decreased below basal levels when cells were cultured with either ethanol or acetaldehyde for 24 hours, and showed the inhibitory effect of chronic ehtanol /acetaldehyde treatment on the activities of these transsriptional factors. Our data indicate that either ethanol or acetaldehyde can induce functional changes of glial cells throught bi-directional modulation of NF-$textsc{k}$B and AP-1 DNA binding activities.

  • PDF

Expression, Purification and Characterization of the BLM binding region of human Fanconi Anemia Group J Protein

  • Yeom, Kyuho;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • FANCJ is a DNA helicase which contributes genome stability by resolving G-quadruplex DNA from 5' to 3' direction. In addition to main ATPase helicase core, FANCJ has the protein binding region at its C-terminal part. BRCA1 and BLM are the binding partner of FANCJ and these protein-protein interactions contribute genomic stability and the proper response to replication stress. As the first attempt for studying FANCJ-BLM interaction, we prepared BLM binding region of FANCJ and characterized with CD and NMR spectroscopy. FANCJ (881-941) with N-ter 6xHis was purified as the oligomer. Secondary structure prediction based on CD data revealed that FANCJ (881-941) composed with ${\beta}$ sheet, turn and coils.$^1H-^{15}N$ HSQC spectra showed nonhomogeneous peak intensities with less number of peaks comparing than the number of amino acids in the construct. It indicated that optimization should be necessary for detailed further structural studies.

Characterization of Functional Groups of Protonated Sargassum polycystum Biomass Capable of Binding Protons and Metal Ions

  • Yun, Yeoung-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2004
  • Biosorption technology is recognized as an economically feasible alternative for the removal and/or recovery of metal ions from industrial wastewater sources. However, the structure of biosorbents is quite complex when compared with synthetic ion-exchange resins, which makes it difficult to quantify the ion-binding sites. Accordingly, this report describes a well-defined method to characterize the pK values and numbers of biomass functional groups from potentiometric titration data. When the proposed method was applied to Sargassum polycystum biomass as a model biosorbent, it was found that the biomass contained three types of functional groups. In addition, the carboxyl group (pK=$3.7{\pm}0.09$) was found to be the major binding sites ($2.57{\pm}0.06 mmol/g$) for positively-charged heavy-metal ions.