• Title/Summary/Keyword: Data Architectures

Search Result 358, Processing Time 0.023 seconds

Numerical Simulation of Incompressible Laminar Flow around a Propeller Using the Multigrid Technique (멀티그리드 방법을 이용한 프로펠러 주위의 비압축성 층류유동 계산)

  • W.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.41-50
    • /
    • 1994
  • An iterative time marching procedure for solving incompressible viscous flows has been applied to the flow around a propeller. This procedure solves three-dimensional Navier-Stokes equations on a moving, body-fitted, non-orthogonal grid using first-order accurate scheme for the time deivatives and second-and third-order accurate schemes for the spatial derivatives. To accelerate iterative process, a multigrid technique has been applied. This procedure is suitable for efficient execution on the current generation of vector or massively parallel computer architectures. Generally good agreement with published experimental and numerical data has been obtained. It was also found that the multigrid technique was efficient in reducing the CPU time needed for the simulation and improved the solution quality.

  • PDF

Multi-class Classification of Histopathology Images using Fine-Tuning Techniques of Transfer Learning

  • Ikromjanov, Kobiljon;Bhattacharjee, Subrata;Hwang, Yeong-Byn;Kim, Hee-Cheol;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.849-859
    • /
    • 2021
  • Prostate cancer (PCa) is a fatal disease that occurs in men. In general, PCa cells are found in the prostate gland. Early diagnosis is the key to prevent the spreading of cancers to other parts of the body. In this case, deep learning-based systems can detect and distinguish histological patterns in microscopy images. The histological grades used for the analysis were benign, grade 3, grade 4, and grade 5. In this study, we attempt to use transfer learning and fine-tuning methods as well as different model architectures to develop and compare the models. We implemented MobileNet, ResNet50, and DenseNet121 models and used three different strategies of freezing layers techniques of fine-tuning, to get various pre-trained weights to improve accuracy. Finally, transfer learning using MobileNet with the half-layer frozen showed the best results among the nine models, and 90% accuracy was obtained on the test data set.

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

Development of Standardized Korean Plant Ontology for International Harmonization of Environmental and Ecological Knowledge Bases (환경·생태 지식베이스의 국제적 조화를 위한 한국형 표준 식물 온톨로지 개발)

  • Eunjeong Ju;Hunjoo Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.201-209
    • /
    • 2023
  • Background: To describe domain knowledge consistently and precisely, the establishment of a controlled vocabulary, a so-called ontology, is essential. Internationally, the plant ontology (PO) in the ecology field has been developed for the anatomy and developmental stages of plants in English, Spanish, and Japanese, but there is no Korean version of the PO due to a lack of knowledge on standardization for Korean plants. Objectives: We aimed to establish a Korean plant ontology with core PO architectures. Methods: The latest ontology web language (OWL)-formatted raw version of the PO was collected from the PO consortium site. A formal workflow process and OWL file-handing tools for efficient Korean content development were conducted and executed. Results: The macro- and micro-perspective frameworks of the PO were presented by analyzing the upper model and the internal OWL-leveled physical structure, respectively. We developed and validated Korean knowledge content for a total of 1,957 classes included in the PO and transplanted them into an ontology modeling system. Conclusions: A Korean plant ontology was established for international harmonization through improved compatibility and data exchangeability with multilingual environmental and ecological knowledge bases.

Structural reliability analysis using temporal deep learning-based model and importance sampling

  • Nguyen, Truong-Thang;Dang, Viet-Hung
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.323-335
    • /
    • 2022
  • The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.

Microservice Identification by Partitioning Monolithic Web Applications Based on Use-Cases

  • Si-Hyun Kim;Daeil Jung;Norhayati Mohd Ali;Abu Bakar Md Sultan;Jaewon Oh
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.268-280
    • /
    • 2023
  • Several companies have migrated their existing monolithic web applications to microservice architectures. Consequently, research on the identification of microservices from monolithic web applications has been conducted. Meanwhile, the use-case model plays a crucial role in outlining the system's functionalities at a high level of abstraction, and studies have been conducted to identify microservices by utilizing this model. However, previous studies on microservice identification utilizing use-cases did not consider the components executed in the presentation layer. Unlike existing approaches, this paper proposes a technique that considers all three layers of web applications (presentation, business logic, and data access layers). Initially, the components used in the three layers of a web application are extracted by executing all the scenarios that constitute its use-cases. Thereafter, the usage rate of each component is determined for each use-case and the component is allocated to the use-case with the highest rate. Then, each use-case is realized as a microservice. To verify the proposed approach, microservice identification is performed using open-source web applications.

Top-Level Implementation of AI4SE, SE4AI for the AI-SE convergence in the Defense Acquisition (무기체계 획득에서 인공지능-시스템엔지니어링 융화를 위한 최상위 수준의 AI4SE, SE4AI 구현방안)

  • Min Woo Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Artificial Intelligence (AI) is a prominent topic in almost every field. In Korea, Systems Engineering (SE) procedures are applied in Defense Acquisition, and it is anticipated that SE procedures will also be applied to systems incorporating AI capabilities. This study explores the applicability of the concepts "AI4SE (AI for SE)" and "SE4AI (SE for AI)," which have been proposed in the United States, to the Korean context. The research examines the feasibility of applying these concepts, identifies necessary tasks, and proposes implementation strategies. For the AI4SE, many attempts and studies applying AI to SE Processes both Requirements & Architectures Define, System implementation & V&V, and Sustainment. It needs Explainability and Security. For the SE4AI, the Functional AI implementation level, Quality & Security of the Data-set, AI Ethics, and Review policies are needed. Furthermore, it provides perspectives on how these two concepts should ultimately converge and suggests future directions for development.

A Study on Machine Learning Compiler and Modulo Scheduler (머신러닝 컴파일러와 모듈로 스케쥴러에 관한 연구)

  • Doosan Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2024
  • This study is on modulo scheduling algorithms for multicore processor in machine learning applications. Machine learning algorithms are designed to perform a large amount of operations such as vectors and matrices in order to quickly process large amounts of data stream. To support such large amounts of computations, processor architectures to support applications such as artificial intelligence, neural networks, and machine learning are designed in the form of parallel processing such as multicore. To effectively utilize these multi-core hardware resources, various compiler techniques are being used and studied. In this study, among these compiler techniques, we analyzed the modular scheduler, which is especially important in one core's computation pipeline. This paper looked at and compared the iterative modular scheduler and the swing modular scheduler, which are the most widely used and studied. As a result, both schedulers provided similar performance results, and when measuring register pressure as an indicator, it was confirmed that the swing modulo scheduler provided slightly better performance. In this study, a technique that divides recurrence edge is proposed to improve the minimum initiation interval of the modulo schedulers.

Performance Evaluation of Energy Saving in Core Router and Edge Router Architectures with LPI for Green OBS Networks (Green OBS 망에서 LPI를 이용하는 코어 및 에지 라우터 구조의 에너지 절감 성능 분석)

  • Yang, Won-Hyuk;Jeong, Jin-Hyo;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.130-137
    • /
    • 2012
  • In this paper, we propose core and edge router architectures with LPI(Low Power Idle) for reducing energy consumption in OBS networks. The proposed core router architecture is comprised of a BCP switch, a burst switch, line cards and sleep/wake controller for LPI. When the offered load of network is low, sleep/wake controller can change the state of the core router line card from active to sleep state for saving the energy after receiving network control packet. The edge router consists of a switch for access line card, a SCU and OBS edge router line cards. The LPI function in edge router line card is performed through network level control by network control packet, individually. Additionally, PHY/transceiver modules can transition active state to sleep state when burst assemble engine generates new bursts. To evaluate the energy saving performance of proposed architecture with LPI, the power consumption of each router is analyzed by using data sheet of commercial router and optical device. And, simulation is also performed in terms of sleep time of PHY/Transceiver through OPNET.

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.