In this thesis, we present process that remove mistake of data before statistical analysis. If field data which is not simple examination about validity of data, we cannot believe analyzed statistics information. As statistical analysis information is produced based on data to be input in statistical analysis process, the data to be input should be free of error. In this paper, we study the application of statistical analysis road map that can enhance application on site by organizing basic theory and approaching on initial data exploratory phase, essential step before conducting statistical analysis. Therefore, access to statistical analysis can be enhanced and reliability on result of analysis can be secured by conducting correct statistical analysis.
It is crucial to develop effective and efficient big data analytics methods for problem-solving in the field of business in order to improve the performance of data analytics and reduce costs and risks in the analysis of customer data. In this study, a big data-driven data analysis system using artificial intelligence techniques is designed to increase the accuracy of big data analytics along with the rapid growth of the field of data science. We present a key direction for big data analysis systems through missing value imputation, outlier detection, feature extraction, utilization of explainable artificial intelligence techniques, and exploratory data analysis. Our objective is not only to develop big data analysis techniques with complex structures of business data but also to bridge the gap between the theoretical ideas in artificial intelligence methods and the analysis of real-world data in the field of business.
This paper proposes a CAE data translation and visualization technique that can verify time-varying continuous analysis simulation in a virtual reality (VR) environment. In previous research, the use of CAE analysis data has been problematic because of the lack of any interactive simulation controls for visualizing continuous simulation data. Moreover, the research on post-processing methods for real-time verification of CAE analysis data has not been sufficient. We therefore propose a scene graph based visualization method and a post-processing method for supporting interoperability of continuous CAE analysis data. These methods can continuously visualize static analysis data independently of any timeline; it can also continuously visualize dynamic analysis data that varies in relation to the timeline. The visualization system for continuous simulation data, which includes a CAE middleware that interfaces with various formats of CAE analysis data as well as functions for visualizing continuous simulation data and operational functions, enables users to verify simulation results with more realistic scenes. We also use the system to do a performance evaluation with regard to the visualization of continuous simulation data.
빅 데이터 환경에서 빅데이터를 분석하기 위한 새로운 방법의 필요성이 대두되고 있다. 데이터의 크기, 다양성, 그리고 적재 속도 등의 빅데이터 특성으로 인해 모집단의 추론에서 전체 데이터의 분석이 가능해졌기 때문이다. 그러나 전통적인 통계분석 방법은 모집단으로부터 추출된 확률표본에 초점이 맞추어져 있다. 따라서 기존의 통계적 접근방법은 빅데이터 분석에 적합하지 않은 경우가 발생한다. 이와 같은 문제점을 해결하기 위하여 본 논문에서는 빅데이터분석을 위한 새로운 접근방법에 대하여 제안하였다. 특히 대표적인 다변량 통계분석 기법인 주성분 분석을 이용하여 효율적인 빅데이터분석을 위한 방법론을 연구하였다. 제안방법의 성능평가를 위하여 통계적 모의실험을 실시하였다.
Load measurement, which is performed based on IEC 61400-13, consists of three stages: the stage of collecting huge amounts of load measurement data through a measurement campaign lasting for several months; the stage of processing the measured data, including data validation and classification; and the stage of analyzing the processed data through time series analysis, load statistics analysis, frequency analysis, load spectrum analysis, and equivalent load analysis. In this research, we pursued the development of an analysis software in MATLAB to save labor and to secure exact and consistent performance evaluation data in processing and analyzing load measurement data. The completed analysis software also includes the functions of processing and analyzing power performance measurement data in accordance with IEC 61400-12. The analysis software was effectively applied to process and analyse the load measurement data from a demonstration research for a 750 kW direct-drive wind turbine generator system (KBP-750D), performed at the Daegwanryeong Wind Turbine Demonstration Complex. This paper describes the details of the analysis software and its processing and analysis stages for load measurement data and presents the analysis results.
Journal of information and communication convergence engineering
/
제21권3호
/
pp.244-251
/
2023
Engineering or humanities data are stored in databases and are often used for search services. While the latest deep-learning technologies, such like BART and BERT, are utilized for data analysis, humanities data still rely on traditional databases. Representative analysis methods include n-gram and lexical statistical extraction. However, when using a database, performance limitation is often imposed on the result calculations. This study presents an experimental process using MariaDB on a PC, which is easily accessible in a laboratory, to analyze the impact of the database on data analysis performance. The findings highlight the fact that the database becomes a bottleneck when analyzing large-scale text data, particularly over hundreds of thousands of records. To address this issue, a method was proposed to provide real-time humanities data analysis web services by leveraging the open source database, with a focus on the Seungjeongwon-Ilgy, one of the largest datasets in the humanities fields.
How do you carry out data analysis\ulcorner There are few texts and little theory. One approach could be to use a pattern language, an idea which has been successful in field as diverse as town planning and software engineering. Patterns for data analysis are defined and discussed, illustrated with examples.
Journal of the Korean Data and Information Science Society
/
제17권1호
/
pp.53-62
/
2006
DNA microarray data analysis is a new technology to investigate the expression levels of thousands of genes simultaneously. Since DNA microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems or that the data are stored to the file format. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system. In this paper, we design and implement network-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.
Most of human factors experiments in nuclear industry domain produe lots of experimental data, thus much time is reauired to analyze the data. DAEXESS was developed to reduce resource demands necessary for the analysis work through systematic data analysis requirements and automated data processing based on computer technology. Physilolgical data, human behavior recording data, system log data and verbal protocl can be collected, synthesized and easily analyzed with with respect to time domain in DAEXESS so that analyser is able to look into inte- grated information on operating context. DAEXESS assists analyser to carry out qualitative and quantitative data analysis easily.
Communications for Statistical Applications and Methods
/
제28권2호
/
pp.135-150
/
2021
We propose principal differential analysis based classification methods. Computations of squared multiple correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine principal differential analysis results with the logistic regression for binary classification. In the numerical study, we compare the principal differential analysis based classification methods with functional principal component analysis based classification. Various scenarios are considered in a simulation study, and principal differential analysis based classification methods classify the functional data well. Gene expression data is considered for real data analysis. We observe that the PDA score based method also performs well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.