• Title/Summary/Keyword: Darcy-Forchheimer equation

Search Result 13, Processing Time 0.022 seconds

The Natural Convection in Horizontal Porous Layer with Vertical or Horizontal Throughflow (수직$\cdot$수평 관통류를 갖는 수평 다공층에서 자연대류 연구)

  • Seo S. J.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.73-81
    • /
    • 1998
  • The effect of vertical or horizontal throughflow on natural convection in horizontal porous layer was investigated. The computations were performed by employing Darcy-Brinkman-Forchheimer equation to consider the effect of inertia and viscous effect. The patterns of streamlines and isotherms are observed by changing the strength of throughflow. The vertical throughflow stabilizes the natural convection in porous layer. It also disturbs the developing vertical and horizontal velocity component of natural convection cell and increases the critical modified Rayleigh number. The horizontal throughflow influences the stabilization of natural convection in porous layer much more than the vertical throughflow. And it changes a stable convection into a oscillatory convection.

  • PDF

Forced Convection in a Circular Pipe with a Partially Filled Porous Medium

  • Kim, Woo-Tae;Hong, Ki-Hyuek;Myung S. Jhon;John G. VanOsdo;Duane H. Smith
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1583-1596
    • /
    • 2003
  • A study of forced convection in a circular pipe with a partially filled porous medium was numerically investigated. The Brinkman-Forchheimer extension of the Darcy model was used to analyze the and temperature distribution in the porous medium. Our study includes two types of porous layer configurations: (1) a layer attached at the tube wall extending inward towards the centerline and (2) a layer at the centerline extending outward. The effect of several parameters, such as Darcy number, effective viscosity, effective thermal conductivity, and inertia parameter, as well as the effect of geometric parameters, were investigated.

Experimental Study of Pressure Drop in Compressible Fluid through Porous Media (다공성재를 통과하는 압축성 유체의 압력강하에 관한 실험적 연구)

  • Seo, Min Kyo;Kim, Do Hun;Seo, Chan Woo;Lee, Seoung Youn;Jang, Seok Pil;Koo, Jaye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.759-765
    • /
    • 2013
  • This study proposes the characteristics of the pressure drop in a compressible fluid through porous media for application to a porous injector in a liquid rocket engine in order to improve the uniformity of the drop size distribution and the mixing performance of shear coaxial injectors. The fluid through the porous media is a Non-Darcy flow that shows a Nonlinear relation between the pressure drop and the velocity at high speed and high mass flow rate. The pressure drop of the Non-Darcy flow can be derived using the Forchheimer equation that includes the losses of viscous and inertia resistance. The permeability and Ergun coefficient represented as a function of the pressure drop and pore size can be applied to the porous injector, where the fluid through the porous media is compressible. A generalized correlation between the pressure drop in relation to the pore size was derived.

Electrochemical Ionic Mass Transfer Correlation in Fluid-Saturated Porous Layer

  • Cho, Eun Su
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.814-817
    • /
    • 2015
  • A new ionic mass transfer correlation is derived for the fluid-saturated, horizontal porous layer. Darcy-Forchheimer model is used to explain characteristics of fluid motion. Based on the microscales of turbulence a backbone mass transfer relation is derived as a function of the Darcy-Rayleigh number, $Ra_D$ and the porous medium Schmidt number, $Sc_p$. For the Darcy's limit of $Sc_p{\gg}Ra_D$, the Sherwood number, Sh is a function of $Ra_D$ only. However, for the region of high $Ra_D$, Sh can be related with $Ra_DSc_p$. Based on the present backbone equation and the electrochemical mass transfer experiments which are electro plating or electroless plating, the new ionic mass transfer correlation is suggested in the porous media.

Measurement of Aerodynamic Properties of Screens for Windbreak Fence using the Apparatus for Testing Screens (공력 저항 측정기를 이용한 방풍펜스 방진막의 공기 투과 저항력 측정)

  • Kim, Rack-Woo;Lee, In-Bok;Hong, Se-Woon;Hwang, Hyun-Seob;Son, Young-Hwan;Kim, Tae-Wan;Kim, Min-Young;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.145-154
    • /
    • 2013
  • Recently, damage occurrence by wind erosion has been increasing in society. In times past, such problems only took place in desert area ; however, in recent years, the wind erosion problem is spreading out to agricultural land. Wind erosion in agricultural land can cause loss of loam soils, the disturbance of the photosynthesis of the crop fields and serious economic losses. To overcome the mentioned problems, installation of windbreak fence can be recommended which function as disturbing strong wind and wind erosion. However, there is still no proper guideline to install the windbreak fence and the installation used to rely on the intuition of the workers due to the lack of related studies. Therefore, this study measured the aerodynamic resistance of screens of the windbreak fence using the apparatus for testing screens. The apparatus for testing screens was designed to measure pressure loss around the screen. Measured pressure loss by wall friction compensated for pressure loss to calculate the aerodynamic resistance of screens. The result of pressure loss by regression analysis derived the aerodynamic coefficient of Darcy-Forchheimer equation and power law equation. The aerodynamic resistance was constant regardless of the overlapped shape when the screen was overlapped into several layers. Increasing the number of layers of the screen, internal resistance increased significantly more, and pressure loss caused by the screen also increased linearly when the wind speed was certain conditions, but permeability had no tendency. In the future, the results of this study will be applied to the computational fluid dynamics simulation. The simulation models will be also validated in advance by wind tunnel experiments. It will provide standard of a design for constructing windbreak fence.

Effects of Double-diffusive Convection on the Mass Transport of Copper Ions in a Horizontal Porous Layer (수평 다공성유체층에서 이온의 물질전달에 대한 이중확산대류 효과)

  • Yoon Do-Young;Kim Min Chan;Choi Chang Kyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 1999
  • In the present study, buoyant force and its stabilizing effects in an electrostatic field were examined systematically in order to reduce the effect of natural convection with thermal stratification in a horizontal fluid-saturated porous layer. The correlation of ionic mass transport induced by double-diffusive convection in a horizontal porous layer has been derived theoretically. And the theoretical model was examined by electrochemical experiments. The theoretical correlation for mass transport which is satisfying Forchheimer's flow equation and based on the micro-turbulence model is derived as a function of soltual Darcy-Rayleigh number, thermal Darcy-Rayleigh number and Lewis number. In the experiment, the mass transport of copper ions in $CuSO_4-H_2SO_4$ solution is measured by electrochemical technique. By assembling theoretical correlation and experimental results, the mass transport correlation induced by double-diffusive convection is proposed as $$Sh=\frac{0.03054(Rs_D-LeRa_D)^{1/2}}{1-3.8788(Rs_D-LeRa_D)^{-1/10}}$$ The present correlation looks flirty reasonable with comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, in order to control the effects of natural convection effectively.

Measurement and Numerical Model on Wave Interaction with Coastal Structure (해안구조물과 파랑상호작용에 관한 수치모델 및 실험)

  • Kim, In-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2009
  • In recent years, there's been strong demand for coastal structures that have a permeability that serves water affinity and disaster prevention from wave attack. The aim of this study is to examine the wave transformation, including wave run-up that propagates over the coastal structures with a steep slope. A numerical model based on the nonlinear shallow water equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable underlayer and laboratory measurements was carried out in terms of the free surface elevations and fluid particle velocities for the cases of regular and irregular waves over 1:5 impermeable and permeable slopes. The numerical results were used to evaluate the application and limitations of the PBREAK numerical model. The numerical model could predict the cross-shore variation of the wave profile reasonably, but showed less accurate results in the breaking zone that the mass and momentum influx is exchanged the most. Except near the wave crest, the computed depth averaged velocities could represent the measured profile below the trough level fairly well.

Heat transfer characteristics by an oscillating flow in a tube with a regenerator (재생기가 포함된 원관내 왕복유동에 의한 열전달 특성)

  • Lee, Geon-Tae;Gang, Byeong-Ha;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.428-439
    • /
    • 1998
  • Fluid flow and heat transfer have been numerically investigated for an oscillating flow in a tube with a regenerator. The regenerator is placed between hot and cold spaces which are heated and cooled at uniform temperature. An oscillating flow is generated by the piston motion at both ends of a tube. The time dependent, two-dimensional Navier-Stokes equations and energy equation are solved by using the finite-volume and moving grid method. The regenerator is adopted as Brinkmann-Forchheimer extended Darcy model. Numerical results are obtained for the flow and temperature fields, and described the effects of the oscillating frequency and amplitude ratio by the piston motion as well as the aspect ratio. The numerical results obtained indicate that the heat transfer between the tube wall and oscillating flow is increased as the oscillating frequency, amplitude ratio and the aspect ratio are increased.

An Investigation on Local Thermodynamic Equilibrium Assumption of Natural Convection in a Porous Medium (다공성 물질 안에서의 자연대류 현상에 대한 열역학적 국소평형상태 가정의 고찰)

  • Kim, In-Seon;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.112-117
    • /
    • 2000
  • A numerical study on natural convection in a vertical square cavity filled with a porous medium is carried out with Brinkman-Forchheimer-extended Darcy flow model, and the validity of local thermodynamic equilibrium assumption is studied. The local thermodynamic equilibrium refers to the state in which a single temperature can be used to describe a heat transfer process in a multiphase system. With this assumption, the analysis is greatly simplified because only one equation is needed to describe the heat transfer process. But prior to using this assumption, it is necessary to know in what conditions the assumption can be used. The numerical results of this study reveal that large temperature difference between fluid phase and solid phase exists near wall region, paticularily when the convection becomes dominant over conduction. And the influence of flow parameters such as fluid Rayleigh number, fluid Prandtl number, dimensionless particle diameter and conductivity ratio are investigated.

  • PDF

Heat Transfer of Oscillating Flow in a Cylinder with Regenerator (재생기를 가진 실린더내의 왕복유동에 관한 열전달)

  • 김진호;이재헌;강병하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1758-1769
    • /
    • 1995
  • The heat transfer of oscillating flow in a cylinder with regenerator was investigated by the moving boundary technique. The flow in regenerator was modeled by means of Brinkman Forchheimer-Extended-Darcy equation . Results showed that when piston moved toward right, velocity vectors near cylinder wall at left piston and right side of regenerator inclined to symmetric axis and velocity vectors near cylinder wall at right piston and left side of regenerator inclined to cylinder wall. And the time averaged Nusselt number was increased by 46.73% when the oscillatory frequency became twice and decreased by 31.46% when the oscillatory frequency became half. The time averaged Nusselt number was increased by 18.09% when thickness of the regenerator became twice and decreased by 7.53% when thickness of the regenerator became half. But mesh size of regenerator hardly affected the Nusselt number. And efficiency of regenerator was larger as the oscillatory frequency was smaller, thickness and mesh size of regenerator was larger.