• Title/Summary/Keyword: Darcy Model

Search Result 95, Processing Time 0.023 seconds

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Analysis of Ship Groundings on Soft Sea Beds

  • Simonsen, B. Cerup;Redersen, P. Terndrup
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.35-47
    • /
    • 1997
  • The consequences associated with ships running aground depend very much on the soil characteristics of the sea bed and the geometrical shape of the ship bow. The penetration into the sea bed depends on these factors and the penetration is an important factor for the ship motion because it influences the ship heave and pitch motions as well as the friction between the ship and the soil. In this paper a rational calculation model is presented for the sea bed soil reaction forces on the ship bottom. The model is based on the assumption that the penetration of the ship bow generates a flow of pore water through the grain skeleton of the soil. The flow is governed by Darcy\`s law and it is driven by the pressure of the pore water at the bow. In addition to this pore water pressure, the bow is subjected to the effective stresses in the grain skeleton at the bow surface. These stresses are determined by the theory of frictional soils in rupture. Frictional stresses on the bow surface are assumed to be related to the normal pressure by a simple Coulomb relation. The total soil reaction as a function of velocity and penetration is found by integration of normal pressure and frictional stresses over the surface of the bow. The analysis procedure is implemented in a computer program for time domain rigid body analysis of ships running aground and it is verified in the paper through a comparison of calculated stopping lengths, effective coefficients of friction, and sea bed penetrations with corresponding experimental results obtained by model tests as well as large, scale tests.

  • PDF

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Characteristic analysis of The Catalyst Layer and Gas Diffusion Layer Model for FEMFC optimal design (FEMFC 최적설계를 위한 촉매층모델과 기체확산층 특성해석)

  • Kwon, Kee-Hong
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • Proton Exchange Membrane Fuel Cell (FEMFC) is a strong candidate for future automobile and power generation because of its high power density, low emission and low operation temperature. The major concerns of the gas diffusion layer (GDL) inside a FEMFC is water management. The GDL is typically comprised of carbon for electrical conductivity and PTFE for Hydrophobicity. In this simulation, GDL flooding was investigated using a simplified approach method of an established equation models(Fick' Law, Darcy, Law, Stefan-Maxwell diffusion). The performance of GDL was shown using result of the inner heat, water density and oxygen density of the cell using model equations. The catalyst layer mode in FEMFC showed results of effectiveness factor, Butler-volmer and hydrogen flux density. These results are interesting because the influence of several factors has been shown and the information will be helpful for fuel cell design.

Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys (알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석)

  • 강충길;임미동
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF

Wind Tunnel Evaluation of Aerodynamic Coefficients of Thuja occidentalis and Mesh Net (풍동실험을 통한 방풍용 서양측백나무와 농업용방풍망의 공기역학계수 평가)

  • Lee, Sojin;Ha, Taehwan;Seo, Siyoung;Song, Hosung;Woo, Saemee;Jang, Yuna;Jung, Minwoong;Jo, Gwanggon;Han, Dukwoo;Hwang, Okhwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.63-71
    • /
    • 2021
  • Windbreak forests, which have a windproof effect against strong winds, are known to be effective in reducing the spread of odors and dust emitted from livestock farms. The effect of reducing the spread of odors and dust can be estimated through numerical models such as computational fluid dynamics, which require aerodynamic coefficients of the windbreaks for accurate prediction of their performance. In this study, we aimed to evaluate the aerodynamic coefficients, Co, C1, C2, and α, of two windbreaks, Thuja occidentalis and a mesh net, through wind tunnel experiments. The aerodynamic coefficients were derived by the relation between the incoming wind speed and the pressure loss due to the windbreaks which was measured by differential pressure sensors. In order to estimate the change in the aerodynamic coefficient concerning various leaf density, the experiments were conducted repeatedly by removing the leaves gradually in various stages. The results showed that the power law regression model more suitable for coefficient evaluation compared to the Darcy-Forchheimer model.

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

Characterizing Groundwater Discharge and Radon Concentration in Coastal Waters, Busan City (부산 해안지역의 물의 라돈 농도와 지하수 유출 특성)

  • Ok, Soon-Il;Hamm, Se-Yeong;Lee, Yong-Woo;Cha, Eun-Jee;Kim, Sang-Hyun;Kim, In-Soo;Khim, Boo-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.53-66
    • /
    • 2011
  • Groundwater which infiltrated in recharge areas discharges in the forms of evapotranspiration, baseflow to streams, groundwater abstraction and eventually flows into the sea. This study characterized radon-222 concentration and electrical conductivity (EC) in coastal groundwater discharge, well groundwater, Ilkwang Stream water, and seawater in the coastal area of Busan Metropolitan City and subsequently estimated groundwater discharge rate to the sea. The median value of Rn-222 concentration is highest in well groundwater (18.36 Bq/L), and then decreases in the order of coastal groundwater discharge (15.92 Bq/L), Ilkwang Stream water (1.408 Bq/L), and seawater (0.030 Bq/L). The relationship between Rn-222 concentration and EC values is relatively strong in well groundwater and then in seawater. However, the relationship is not visible between coastal groundwater discharge and Ilkwang Stream water. The groundwater discharge rate to the sea is estimated as $3,130m^3$/day by using radon mass budget model and $16,788m^3$/day by using Darcy's law.

Genetic Parameters for Linear Type Traits and Milk, Fat, and Protein Production in Holstein Cows in Brazil

  • Campos, Rafael Viegas;Cobuci, Jaime Araujo;Kern, Elisandra Lurdes;Costa, Claudio Napolis;McManus, Concepta Margaret
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.476-484
    • /
    • 2015
  • The objective of this study was to estimate genetic and phenotypic parameters for linear type traits, as well as milk yield (MY), fat yield (FY) and protein yield (PY) in 18,831 Holstein cows reared in 495 herds in Brazil. Restricted maximum likelihood with a bivariate model was used for estimation genetic parameters, including fixed effects of herd-year of classification, period of classification, classifier and stage of lactation for linear type traits and herd-year of calving, season of calving and lactation order effects for production traits. The age of cow at calving was fitted as a covariate (with linear and quadratic terms), common to both models. Heritability estimates varied from 0.09 to 0.38 for linear type traits and from 0.17 to 0.24 for production traits, indicating sufficient genetic variability to achieve genetic gain through selection. In general, estimates of genetic correlations between type and production traits were low, except for udder texture and angularity that showed positive genetic correlations (>0.29) with MY, FY, and PY. Udder depth had the highest negative genetic correlation (-0.30) with production traits. Selection for final score, commonly used by farmers as a practical selection tool to improve type traits, does not lead to significant improvements in production traits, thus the use of selection indices that consider both sets of traits (production and type) seems to be the most adequate to carry out genetic selection of animals in the Brazilian herd.

Development of Wafer Grinding Spindle with Porous Air Bearings (다공질 공기 베어링을 적용한 반도체 웨이퍼 연마용 스핀들 개발)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Gyunchul Hur;Kisoo Kim
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Because of their cleanliness, low friction, and high stiffness, aerostatic bearings are used in numerous applications. Aerostic bearings that use porous materials as means of flow restriction have higher stiffness than other types of bearings and have been successfully applied as guide bearings, which have high motion accuracy requirements. However, the performances of porous bearings exhibit strong nonlinearity and can vary considerably depending on design parameters. Therefore, accurate prediction of the performance characteristics of porous bearings is necessary or their successful application. This study presents a porous bearing design and performance analysis for a spindle used in wafer polishing. The Reynolds and Darcy flow equations are solved to calculate the pressures in the lubrication film and porous busing, respectively. To verify the validity of the proposed analytical model, the calculated pressure distribution in the designed bearing is compared with that derived from previous research. Additional parametric studies are performed to determine the optimal design parameters. Analytical results show that optimal design parameters that obtain the maximum stiffness can be derived. In addition, the results show that cross-coupled stiffness increases with rotating speed. Thus, issues related to stability should be investigated at the design stage.