• 제목/요약/키워드: Darcy's flow

검색결과 87건 처리시간 0.022초

평판형 수압파쇄 균열을 통과하는 다공질유동 특성에 관한 DNS 해석 연구 (DNS STUDY ON THE FLOW CHARACTERISTICS THROUGH SIMPLE POROUS HYDRAULIC FRACTURES)

  • 신창훈;박원규
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.19-27
    • /
    • 2016
  • The flow analyses through a porous hydraulic fractures is among the most important tasks in recently developed shale reservoirs but is rendered difficult by non-Darcy effects and geometric changes in the hydraulic fractures during production. In this study, several Computational Fluid Dynamics(CFD) models of hydraulic fractures, with a simple shape such as that of parallel plates, filled with proppants were built. Direct Numerical Simulation(DNS) analyses were then carried out to examine the flow loss characteristics of the fractures. The hydraulic diameters for the simulation models were calculated using the DNS results, and then they were compared with the results from Kozeny's definition of hydraulic diameter which is most widely used in the flow analysis field. Also, the characteristic parameters based on both hydraulic diameters were estimated for the investigation of the flow loss variation features. Consequently, it was checked in this study that the hydraulic diameter based on Kozeny's definition is not accordant to the results from the DNS analyses, and the case using the CFD results exhibits f Re robustness like general pipe flows, whereas the other case using Kozeny's definition doesn't. Ultimately, it is expected that discoveries reported in this study would help further porous flow analyses such as hydraulic fracture flows.

고분자 수지 이송 성형에서 브레이드 프리폼의 두께방향 투과율 계수 측정 (Out-of-Permeability Measurement of the Braided Preform in Resin Transfer Molding)

  • Suk, Chae-Hui;Seok, Song-Yeong;Ryun, Yun-Jae
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2003
  • In Resin transfer molding (RTM), composite parts are produced by impregnation of a dry reinforcement with liquid matrix resin. Permeability is a key issue in this process. For thin parts, the resin flow in the thickness direction can be neglected. Therefore thin parts are considered as two-dimensional composites. However the resin flow through the thickness is important to thicker parts and we have to consider out-of-plane permeability. This work discusses a method to measure out-of-plane permeability. The flow rate and pressure drop across the porous media were measured. Also one dimensional form of Darcy's law is applied to calculate the out-of-plane permeability of various preforms. The flow is injected uniformly into layers of the preform. And a circular fiber mat with 6cm diameter was cut and flattened from cylindrical mandrel.

  • PDF

다공성 분리판을 적용한 고분자 전해질 연료전지의 유동 분포에 관한 전산해석 연구 (Numerical Study on Flow Distribution in PEMFC with Metal foam Bipolar Plate)

  • 송명호;김경연
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.29-35
    • /
    • 2016
  • It is important to uniformly supply the fuel gas into the reaction activity area in polymer electrolyte membrane fuel cell (PEMFC). Recent studies have shown that the cell performance can be significantly improved by employing metal foam gas distributor as compared with the conventional bipolar plate types. The metal foam gas distributor has been reported to be more efficient to fuel transport. In this study, three-dimensional computational fluid dynamics (CFD) simulations have been performed to examine the effects of metal foam flow field design on the fuel supply to the reaction site. Darcy's law is used for the flow in the porous media. By solving additional advection equation for fluid particle trajectory, the gas transport has been visualized and examined for various geometrical configuration of metal foam gas distributor.

통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발 (Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory)

  • 신휴성
    • 지질공학
    • /
    • 제23권4호
    • /
    • pp.447-455
    • /
    • 2013
  • 본 연구에서는 다공질 지반체내의 투수계수를 계산하기 위하여 정방형의 배열형태를 갖는 유동관망(pipe network) 유동해석 모델을 개발하였다. 본 유동관망을 통한 유체의 흐름 메커니즘은 통계적 침투이론(percolation theory)에 기초하여 정의된다(Stauffer and Aharony, 1994). 여기서, 개별 유동관의 직경들이 주어진 다공질 매질의 공극률과 공극크기 분포특성을 기초로 하여 통계적으로 지정됨으로 계산된 유체흐름은 불균일한 채널 유동 형태로 나타난다. 본 유동해석에서는 유동관망 모델의 한쪽 경계면에 가압된 유체가 투입되고 다른 측면 경계면들은 흐름을 억제하는 경계조건을 두어 한 방향으로 유동관망을 통해 유체의 흐름을 유도하여 모델링된다. 이때, 흐름을 허용할지를 정의하는 확산조건(percolation condition)이 각 유동관에 부여되며, 이는 각 유동 경로의 직경과 재료면 특성을 기초로 계산된 삼투압(capillary pressure) 수준에 의해 정의된다. 유체가 유입되는 면의 수압에 대해 전체 유동관망 모델 내의 수압 분포가 평형을 이루면 유출되는 면의 수압이 일정해 지며, 유입면의 수압과 계산된 유출면의 수압 및 유동량을 Darcy 방정식에 적용하면 유동관망 모델로 모사된 다공질 매질의 투수계수를 얻어 낼 수 있다. 본 연구에서는, 민감할 것으로 예상된 유동 격자망의 규모의 투수계수 결과값에 대한 민감도를 검토하였으며, 실제 석유개발 현장에서 수집된 시추코어에 대해 측정된 투수계수값과 제안 네트워크 모델을 이용한 계산값과 비교하여 합리적인 범위 내에서 잘 부합됨을 보였다.

흐름과 완전중복파와의 공존장하에서 해저지반내 동적응답의 해석해 (An Analytical Solution of Dynamic Responses for Seabed under Flow and Standing Wave Coexisting Fields)

  • 이광호;김동욱;김도삼;김태형;김규한;전종혁
    • 한국해안·해양공학회논문집
    • /
    • 제27권2호
    • /
    • pp.118-134
    • /
    • 2015
  • 일정수심상에서 완전중복파와 흐름이 공존하는 경우 얕은 두께를 포함하는 유한두께 및 무한두께의 해저 지반내에서 동적응답을 나타내는 해석해를 유도한다. 이 때, Biot의 압밀이론에 기초하여 해저지반은 투과탄성매체로, 간극유체는 압축성으로, 그리고 지반내 간극수의 흐름은 Darcy법칙으로 각각 가정된다. 도출된 해석해는 기존의 해석결과와의 비교 검토로부터 검증되며, 실제 계산에서는 흐름속도, 입사파의 주기 및 지반두께 등의 변화에 따른 지반변위, 간극수압, 유효응력 및 전단응력의 변동특성을 면밀히 검토한다. 이로부터 흐름이 존재하는 경우 흐름으로 인한 입사파와 반사파의 주기 및 파장의 변화로 인하여 흐름이 없는 경우의 지반응답과는 많은 차이를 나타낸다는 것을 확인할 수 있다.

Failure mechanisms in coupled poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Nikolic, Mijo
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.43-59
    • /
    • 2018
  • The presence of the pore fluid strongly influences the reponse of the soil subjected to external loading and in many cases increases the risk of final failure. In this paper, we propose the use of a discrete beam lattice model with the aim to investigate the coupling effects of the solid and fluid phase on the response and failure mechanisms in the saturated soil. The discrete cohesive link lattice model used in this paper, is based on inelastic Timoshenko beam finite elements with enhanced kinematics in axial and transverse direction. The coupling equations for the soil-pore fluid interaction are derived from Terzaghi's principle of effective stresses, Biot's porous media theory and Darcy's law for fluid flow through porous media. The application of the model in soil mechanics is illustrated through several numerical simulations.

열가소성 수지 복합재료에서의 수지 함침 (The Impregnation of Thermoplastic Resin into a Unidirectional Fiber Bundle)

  • 김태욱;전의진;이우일
    • 한국기계연구소 소보
    • /
    • 통권18호
    • /
    • pp.163-168
    • /
    • 1988
  • Impregnation of molten thermoplastic resin into continuous unidirectional fiber bundles was investigated. The degree of impregnation is defined as the ratio between the number of impregnated fibers and the total number of fibers of a bundle. The degree of impregnation was modeled as a function of time, impregnation pressure, temperature and tow size assuming the radial inward flow through the fiber bundle is governed by the Darcy's law. The permeability was assumed to be constant. Experiments were performed to evaluate the validity of the medel. Today's T300 graphite fiber bundles and Polyetheretherketone(PEEK) resin was used. A fiber bundle and resin powder were put into a mold and pressure and temperature were applied. After a predetermined time, the sample was taken out and microphotographs of the cross-section were taken. From the microphotographs, the number of impregnated fibers was counted and then the degree of impregnation was determined. Experiments were also performed for different tow sizes. Good agreements were found between the model and the experiments rendering a confidence in the model.

  • PDF

반용융 재료의 압출공정에 관한 유한요소해석 (Finite Element Analysis of Extrusion Process in Semi-Solid State)

  • 황재호;고대철;민규식;김병민;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF

일차원 kinematic wave 모형을 이용한 고속도로 강우 유출수의 동적 거동 예측 (Predicting Dynamic Behaviors of Highway Runoff using A One-dimensional Kinematic Wave Model)

  • 강주현;김이형
    • 한국물환경학회지
    • /
    • 제23권1호
    • /
    • pp.38-45
    • /
    • 2007
  • A one-dimensional kinematic wave model was used to calculate temporal and spatial changes of the highway runoff. Infiltration into pavement was considered using Darcy's law, as a function of flow depth and pavement hydraulic conductivity ($K_p$). The model equation was calculated using the method of characteristics (MOC), which provided stable solutions for the model equation. 22 storm events monitored in a highway runoff monitoring site in west Los Angeles in the U.S. were used for the model calculation and evaluation. Using three different values of $K_p$ ($5{\times}10^{-6}$, $10^{-5}$, and $2{\times}10^{-5}cm/sec$), total runoff volume and peak flow rate were calculated and then compared with the measured data for each storm event. According to the calculation results, $10^{-5}cm/sec$ was considered a site representative value of $K_p$. The study suggested a one-dimensional method to predict hydrodynamic behavior of highway runoff, which is required for the water quality prediction.

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.