• Title/Summary/Keyword: Dangerous driving detection algorithm

Search Result 5, Processing Time 0.018 seconds

Development of a Safe Driving Management System (안전운전 관리시스템 개발)

  • Cho, Jun-Hee;Lee, Woon-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.71-77
    • /
    • 2007
  • Dangerous driving is a major cause of traffic accidents in Korea. It becomes more serious for commercial vehicles due to higher fatality rates. The Safe Driving Management System (SDMS), developed in this research, is a comprehensive solution that monitors and stores driving conditions of vehicles, detects dangerous driving situations, and analyzes the results in real time. The Safe Driving Management System consists of a vehicle movement information controller, a dangerous driving detection algorithm and a vehicle movement data report and analysis program. The dangerous driving detection algorithm detects and classifies dangerous driving conditions into representative cases such as sudden acceleration, sudden braking, sudden lane change, and sudden turning. Both computer simulation and vehicle test have been conducted to develop and verify the algorithm. The Safe Driving Management System has been implemented on commercial buses to verify its reliability and objectivity. It is expected that the system can contribute to prevention of traffic accidents, systemization of safe driving management and reduction of commercial vehicle operation costs.

Development of a Cause Analysis Program to Risky Driving with Vision System (Vision 시스템을 이용한 위험운전 원인 분석 프로그램 개발에 관한 연구)

  • Oh, Ju-Taek;Lee, Sang-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.149-161
    • /
    • 2009
  • Electronic control systems of vehicle are rapidly developed to keep balance of a driver`s safety and the legal, social needs. The driver assistance systems are putted into practical use according to the cost drop in hardware and highly efficient sensor, etc. This study has developed a lane and vehicle detection program using CCD camera. The Risky Driving Analysis Program based on vision systems is developed by combining a risky driving detection algorithm formed in previous study with lane and vehicle detection program suggested in this study. Risky driving detection programs developed in this study with information coming from the vehicle moving data and lane data are useful in efficiently analyzing the cause and effect of risky driving behavior.

  • PDF

Neighboring Vehicle Maneuver Detection using IMM Algorithm for ADAS (지능형 운전보조시스템을 위한 IMM 기법을 이용한 전방차량 거동추정기법)

  • Jung, Sun-Hwi;Lee, Woon-Sung;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.718-724
    • /
    • 2013
  • In today's automotive industry, there exist several systems that help drivers reduce the possibility of accidents, such as the ADAS (Advanced Driver Assistance System). The ADAS helps drivers make correct and quick decisions during dangerous situations. This study analyzed the performance of the IMM (Interacting Multiple Model) method based on multiple Kalman filters using the data acquired from a driving simulator. An IMM algorithm is developed to identify the current discrete state of neighboring vehicles using the sensor data and the vehicle dynamics. In particular, the driving modes of the neighboring vehicles are classified by the cruising and maneuvering modes, and the transition between the states is modeled using a Markovian switching coefficient. The performance of the IMM algorithm is analyzed through realistic simulations where a target vehicle executes sudden lane change or acceleration maneuver.

Development of Speed Measurement Accuracy Using Double Loop Detectors (2중 루프검지기 속도측정 정확도 개선 알고리즘 개발)

  • 강정규
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.163-174
    • /
    • 2002
  • Speeding has been reported as one of the major causes for fatal traffic accidents in Korea. The resolution against this dangerous speeding comes to make the automated speed enforcement system an enforcement tool. The speed detection device, which measures speeds of each incoming vehicles using double loop sensors, requires high accuracy. The object of this study is to develop an accurate speed measurement algorithm using double loop detectors. Some important findings are summarized as follows: 1) It was found that speed measurement errors are caused by scanning rate, distance of two loops, irregular vehicle trajectories, multiple vehicles in detection zone. 2) A proposed algorithm using two signal set proved to reduce variance as well as mean of speed measurement. 3) A proposed filtering algorithm was effective to filter irregular driving vehicles and multiple vehicles in detection zone. A comprehensive field test of developed algorithm resulted in significant improvement of speed measurement accuracy.

Robust Obstacle Detection and Avoidance Algorithm for Infrastructure-Based Vehicle Communication Under Signal Interference (중계기를 통한 다중 차량 간 통신 상황에서 신호 간섭에 강한 장애물 감지 및 회피 알고리즘)

  • Choi, Byung Chan;Kwon, Hyuk Chan;Son, Jin Hee;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.574-580
    • /
    • 2016
  • In this paper, we will introduce the system that can control multiple vehicles on the road through Single Board Computers and V2I (Vehicle-To-Infrastructure). Also, we will propose the group evasive maneuver decision algorithm, which plays a critical role in deciding whether the vehicles in the system have to conduct evasive maneuvers to avoid obstacles on the road. In order to test this system, we have utilized Wi-Fi and TCP/IP for establishing the communication between multiple vehicles and the relay server, and observed their driving states on the road with obstacles. During the experiments, we have discovered that our original decision algorithm possesses high failure rate when there is frequency interference in ISM (Industrial Scientific Medical) band. In order to reduce this failure rate, we have implemented the data transition detector. This paper will focus on how the use of data transition detector can affect the reliability of the system under the frequency interference of ISM band. If this technology is improved and applied in the field, we will effectively deal with such dangerous situations as multiple collision accidents through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. Furthermore, this can be applied to the autonomous driving technologies. This can be used as the reference data for the development of the similar system.