• 제목/요약/키워드: Dancer modeling

검색결과 5건 처리시간 0.019초

산업용 컨버팅 머신의 펜듈럼 덴서 모델링 및 해석 (Modeling and Analysis of a Pendulum Dancer in Industrial Converting Machines)

  • 강현규;신기현;김상철
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.482-488
    • /
    • 2009
  • Dancer system is typically used equipment for attenuation of tension disturbances. In industrial converting machines, a composite type of dancer system is applied which is mixture of active and passive dancer. It includes feedback position control loop of roll with pendulum dancer and its characteristics is different from passive and active one. In this paper, a mathematical model of the pendulum dancer was derived including PI position feedback controller and it was analyzed by using a pole-zero map and bode plot under various conditions. It was found out that velocity, length of span and inertia were associated with the performance of regulation. It was suggested that the length of upstream span should be greater than that of the downstream and the inertia should be smaller for improvement of the performance. The results can be used for design guidelines of the industrial dancer system.

컨버팅 머신의 덴서 동특성 해석 (Dynamics of Dancer Systems in Converting Machines)

  • 강현규;성창엽;신기현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.65-66
    • /
    • 2006
  • Dancer systems are most widely used mechanism for attenuation of tension disturbances. Lately, demands fur high speed converting machines over 500mpm(m/min) are raising but domestic converting industries can not come up with the machines because capacities for a designing of the converting machine are restricted lower than 300mpm. Moreover roll-to-roll is attracted flexible display manufacturer's attention as a effective method for productivity. A constant tension level in the span before the first printing cylinder is the key of high speed quality printing. This paper presents a modeling and simulations of dancer systems on converting machines.

  • PDF

고속 롤투롤 인쇄기의 장력제어시스템 안정도 해석 (Stability Analysis of the Tension Control System of a High-speed Roll-to-Roll Printing Machine)

  • 강철구;이봉주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.873-878
    • /
    • 2007
  • Stability of high-speed roll-to-roll printing machines is one of the most important factors that are required for the printing machines to operate properly and to obtain reasonable printing performance. This paper proposes a new model for the web-tension system of a high-speed gravure printing machine considering span-length variations due to dancer rollers, and analyzes the stability of plant dynamics of the printing machine using the proposed model. Span-length variations due to dancer motions are considered for the modeling of plant dynamics in two ways; one is to include the effect of span-length variations without considering dancer inertias and viscous frictions, and the other is to include the effect of span-length variations with considering dancer inertias and viscous frictions. The stability of the plant model is analyzed for various web-speeds using the eigenvalues of the linearized model about operating points.

  • PDF

댄서롤이 장착된 웹 장력 제어시스템의 모델링 및 규명 (Modeling and Identification of Web Tension Control System with Dancer Roll)

  • 이상화;이재원;이혁진
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.70-76
    • /
    • 2009
  • Web tension control system recently have been applied to OLED(Organic Light-Emitting Diode), RFID of flexible material, e-Paper and PLED(Polymeric LED) and various web control algorithms have being developed for higher productivity and product quality These system need an accuracy model to design and implement controller. In this paper, the web tension control system with dancer roll is mathematically modeled. Mathematical model consists of 8 subsystems and each subsystems can be described as impedance structure which connected by velocity and tension. Mathematical model is different from the estimated model at high frequency range because of structure dynamics which is ignored on mathematical model. The estimated model is derived using ARMAX model. The controller is designed using the estimated model. The step response of the estimated model are compared with that of physical model for a validation of estimated model. The experimental results show a good match between them.

Optimal Trajectory Modeling of Humanoid Robot for Argentina Tango Walking

  • Ahn, Doo-Sung
    • 동력기계공학회지
    • /
    • 제21권5호
    • /
    • pp.41-47
    • /
    • 2017
  • To implement Argentina tango dancer-like walking of the humanoid robot, a new trajectory generation scheme based on particle swarm optimization of the blending polynomial is presented. Firstly, the characteristics of Argentina tango walking are derived from observation of tango dance. Secondly, these are reflected in walking pose conditions and cost functions of particle swarm optimization to determine the coefficients of blending polynomial. For the stability of biped walking, zero moment point and reference trajectory of swing foot are also included in cost function. Thirdly, after tango walking cycle is divided into 3 stages with 2 postures, optimal trajectories of ankles, knees and hip of lower body, which include 6 sagittal and 4 coronal angles, are derived in consequence of optimization. Finally, the feasibility of the proposed scheme is validated by simulating biped walking of humanoid robot with derived trajectories under the 3D Simscape environment.