• Title/Summary/Keyword: Damping simulation

Search Result 742, Processing Time 0.024 seconds

Development of Dynamic Simulation Algorithm of UPFC (UPFC의 동적 시뮬레이션 알고리즘 개발)

  • Son, K.M.;Kim, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.226-228
    • /
    • 1999
  • This paper presents a dynamic simulation algorithm for studying the effect of Unified Power Flow Controller(UPFC) on the low frequency power system oscillations and transient stability studies. The algorithm is a Newton-type one and gives a fast convergence characteristics. The algorithm is applied to inter-area power oscillation damping regulator design of a sample two-area power system. The results show that UPFC is very effective for damping inter-area oscillations.

  • PDF

Effect of UPFC for Damping Power System Oscillations (UPFC의 전력개통 동요 억제 효과)

  • Son, Kwang-M.;Oh, Tae-Kyoo;Kim, Hak-Man;Jeon, Jin-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.887-889
    • /
    • 1998
  • This paper focuses on the simulation and ciontrol of the Unified Power Flow Controller (UPFC). This paper gives a brief outline of the initial results of the effect of the UPFC on the damping of the power system oscillations. The nonlinear simulation results show the effectiveness of each UPFC control variable and gives the future research direction.

  • PDF

Research on Evaluation of Properties of PA6/PA66/GF Composite according to Injection Pressure and Simulation of Damping Performance (엔진마운트 브라켓용 PA66/GF 복합재료의 특성 평가 및 진동감쇠 성능 시뮬레이션에 대한 연구)

  • Seong-Hun Yu;Hyun-Sung Yun;Dong-Hyun Yeo;Jun-Hee Lee;Jong-Su Park;Jee-hyun Sim
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.59-67
    • /
    • 2024
  • Research was conducted on a PA material-based composite material manufacturing method for application to engine mount brackets. Engine mount brackets must have heat resistance, impact resistance, and damping performance. PA66 resin was used as the base material for the composite material. The glass fiber was used as the reinforcement material. The composite material was manufactured using the injection molding method. The thermal, mechanical, and morphological characteristics were analyzed depending on the content of glass fiber. 3D model was created using the property evaluation database of composite materials(input data). The damping performance of the generated 3D model was extracted as out-put data. The reason for evaluating the characteristics of PA-based composite materials and conducting simulations on the damping performance of 3D models of engine brackets is because product performance can be predicted without manufacturing actual automobile parts and conducting damping performance tests. As a result of the damping simulation, damping performance tended to increase proportionally as the mass fraction of the reinforcement increased. But above a certain level, it no longer increased and slightly decreased. As a result of comparing the actual experimental values a nd the simulated values, the approximate value was within ±5%.

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou;Zhuangning Xie;Lele Zhang
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.91-103
    • /
    • 2023
  • Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

Performance Evaluation of Fin-Stabilizer by Model Test and Time-domain Simulation (시뮬레이션과 모형시험을 통한 핀 안정기의 성능평가)

  • 홍사영;김현조;최윤락;신영균;유병석;이승준
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.86-90
    • /
    • 2001
  • Demand of good seakeeping perfomace is increasing for sea going vessels such as cruisers, naval ships and container ships. Especillay roll motion is one of major concerns in evaluation of seakeeping performance due to its large resonace motion. Since large roll resonance motion is mainly arised from inherent small damping. use of additional mechnism to provide roll damping can significantly reduce roll motion. In this paper, a reliable performace evaluation method of fin stabilizer, which is very useful for stabilizing roll motion of mid and high speed vessls, is described. Model test and time domain simulation methods are adopted for performance evaluation in which real operating situation of fin stabilizer can be exactly modelled. Model test and simulation results show good correlations between model test and simulation results.

  • PDF

Cross Correlated Effects of Radiation Damping and the Distant Dipolar Field with a Pulsed Field Gradient in Solution NMR

  • Chung Kee-Choo;Ahn Sang-Doo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.46-58
    • /
    • 2006
  • With a simple pulse sequence ($\pi/2$-{gradient, duration T}-acquisition) in solution NMR, detected signal has slowly grown up to percents of the equilibrium magnetization. The source of this unusual resurrection of dephased magnetization after a crushed gradient is cross-correlated effects of radiation damping and the distant dipolar field, which has been demonstrated by a numerical simulation and theoretical analysis.

  • PDF

Influence of geometry and loading conditions on the dynamics of martensitic fronts

  • Berezovski, Arkadi
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.123-135
    • /
    • 2008
  • Damping capacity of SMA damping devices is simulated numerically under distinct geometry and loading conditions. Two-dimensional numerical simulations are performed on the basis of a phenomenological model of dynamics of martensite-austenite phase boundaries. Results of the simulations predict the time delay and the value of the stress transferred to other parts of a construction by a damper device.

Response Of Steel Frame Structures With Added Elastic Dampers (탄성 댐퍼가 추가된 대형철골 구조물의 응답특성)

  • 배춘희;조철환;양경현;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.808-812
    • /
    • 2002
  • The feasibility of using elastic dampers to mitigate earthquake-induced structural response is studied in this paper. The properties of elastic dampers are briefly described. A procedure for evaulating the elastic damping effect when added to a structure is proposed in which the damping effect of elastic dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.

  • PDF

Optimal control algorithm for active damping of interlinking converter in the variable load conditions (Interlinking 컨버터의 부하 변동에 따른 액티브 댐핑을 위한 최적 제어 알고리즘)

  • Kim, Tae-Gyu;Lee, Hoon;Choi, Bong-Yeon;Kang, Kyung-Min;Kim, Mi-Na;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.373-374
    • /
    • 2020
  • This paper proposes an optimal control algorithm which determines active damping resistor values considering load variation and grid side current THD. Proposed optimal control algorithm improves grid side current THD of the interlinking converter without passive damping resistor and is verified by simulation under variable load conditions.

  • PDF

A study on performance assessment of WEC rotor in the Jeju western waters

  • Poguluri, Sunny Kumar;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.361-380
    • /
    • 2018
  • The dynamic performance of the wave energy converter (WEC) rotor with different geometric parameters such as depth of submergence and beak angle has been assessed by considering the linear potential flow theory using WAMIT solver and along with the computational fluid dynamics (CFD). The effect of viscous damping is incorporated by conducting numerical free decay test using CFD. The hydrodynamic coefficients obtained from the WAMIT, viscous damping from the CFD and estimated PTO damping are used to solve the equation of motion to obtain the final pitch response, mean optimal power and capture width. The viscous damping is almost 0.9 to 4.6 times when compared to the actual damping. It is observed that by neglecting the viscous damping the pitch response and power are overestimated when compared to the without viscous damping. The performance of the pitch WEC rotor in the Jeju western coast at the Chagwido is analyzed using Joint North Sea Wave Project (JONSWAP) spectrum and square-root of average extracted power is obtained. The performance of WEC rotor with depth of submergence 2.8 m and beak angle $60^{\circ}$ found to be good compared to the other rotors.