• Title/Summary/Keyword: Damping device

Search Result 265, Processing Time 0.023 seconds

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

A Study on the Modal Parameter Identification of a Ship using Operational Modal Analysis (실험 및 실선 계측을 통한 진동특이치 평가에 관한 연구)

  • Kim, Byoung-Ook;Jin, Bong-Man;Kong, Young-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.497-501
    • /
    • 2009
  • When modal tests on the large structures and machinery are performed, it is in general difficult and inaccurate to use artificial excitation devices such as impact hammers, because of insufficient capacity of the device and different environmental conditions of the concerned structures. Therefore, the Operational Modal Analysis(OMA) technique, which is performed by measuring only vibration responses during the operation of the objective product, can be one alternative. In this paper, the way to identify natural frequencies, mode shapes and damping ratios of a ship by using the OMA during the sea trail is described.

Seismic study of buildings with viscoelastic dampers

  • Pong, W.S.;Tsai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.569-581
    • /
    • 1995
  • In this paper, the seismic behavior of a 10-story building equipped with viscoelastic dampers is analyzed. The effects of ambient temperature, the thickness, the total area, and the position of the viscoelastic dampers are studied. Results indicate that the energy-absorbing capacity of viscoelastic damper decreases with increasing the ambient temperature. The thickness and the total area of viscoelastic dampers also affect the seismic mitigation capacity. The thickness cannot be too small, which is not effective in vibration reduction, nor can it be too large, which not only increases the cost but also reduces the seismic resistance. The total area of viscoelastic dampers should be determined properly for optimum damper performance at the most economical design. The mounting position of viscoelastic dampers also influences the structure's seismic performance. Numerical results show that, if properly equipped, the VE dampers can reduce the structural response both floor displacement and story shear force and increase the overall level of damping in structures during earthquakes.

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

Performance-Based Seismic Design for High-Rise Buildings in Japan

  • Nakai, Masayoshi;Koshika, Norihide;Kawano, Kenichi;Hirakawa, Kiyoaki;Wada, Akira
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.155-167
    • /
    • 2012
  • This paper introduces the outlines of review and approval processes, general criteria and usual practices taken in Japan for the seismic design of high-rise buildings. The structural calculations are based on time-history analyses followed by performance evaluations. This paper also introduces structural design of two high-rise buildings: one is a 100 m high reinforced concrete residential building, and the other is a 300 m high steel building for mixed use.

Design of Fuzzy Controller using Genetic Algorithm with a Local Improvement Mechanism (부분개선 유전자알고리즘을 이용한 퍼지제어기의 설계)

  • Kim, Hyun-Su;Paul N., Roschke;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.469-476
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively. A fuzzy logic controller (FLC) is used to modulate the MR damper. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. Neuro-fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find appropriate fuzzy rules and the GA-optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

  • PDF

A structural study on mold EMBO equipment to minimize the influence on the bottom dead center displacement of precision high-speed press (정밀고속 PRESS 하사점 변위량에 영향을 최소화 하는 금형 EMBO 장치에 관한 구조 연구)

  • Kim, Seung-Soo
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Laminate products for motor core are developed with a structure in which the importance of quality level and clamping force is influenced by the recent performance and safety of the product. It has been confirmed that the accuracy of the mold is emphasized, and that the accuracy of the tightening force produced by the stacked product for the motor core is greatly influenced by the change in the bottom dead center displacement of the aged high speed press. The reason why setting the mold, and test the effect of bottom dead center of high speed press is to improve product pull force in embossing process at mold. We have applied the system to minimize the effect on the damping displacement under the dynamical degree of the equipment by applying the emboss complement device which can test the influence and complement in the process.

A Study of Pneumatic Reaction Force of Air Chamber for an OWC Type Wave Energy Device by Forced Heave Experiments (강제동요시 OWC형 파력발전 공기챔버의 공기반력 실험연구)

  • Hong, Seok-Won;Choi, Hark-Sun;Lew, Jae-Moon;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.11-17
    • /
    • 2005
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct are studied experimentally. Experimental owe model is idealized as a simple circular cylinder with an orifice type air duct located at the middle oj the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

Three OOP Haptic Simulator for a Needle Biopsy (3자유도 힘반향 장치를 이용한 침생검 햅틱 시뮬레이터)

  • 권동수;경기욱;감홍식;박현욱;나종범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.539-539
    • /
    • 2000
  • This paper shows how to implement force reflection for a needle insertion problem. The target is a needle spine biopsy simulator for tumor inspection by needle insertion. Simulated force is calculated from the relationship of volume graphic data and the orientation and Position of the needle, and it is generated using PHANTOM$^{TM}$. To generate realistic force reflection, the directional force of the needle has been generated by tissue model. The other rotational force is generated using a pivot to keep the needle in the initial inserted direction after puncturing the skin. Since the used haptic device has limitation for generating high stiffness and large damping, scale downed model and digital filter are used to stabilize the system.m.

  • PDF

Mechanical Durability of ER Fluids and Performance Investigation of ER Dampers (ER유체의 기계적 내구성 및 ER댐퍼의 성능고찰)

  • 박우철;최승복;정재천;서문석;강윤수;여문수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1044-1047
    • /
    • 1996
  • This paper presents durability characteristics of electrorheological(ER) fluids which undergo a reversible phase change depending upon the imposition of electric fields. The field-dependent Bingham properties are subjected to be altered from long time use of the ER fluid. The level of the changed properties depends upon employed device and test conditions. A piston-rod system which has same mechanism as ER dampers is adopted in this study and tested by increasing operation cycle up to 1 million. Bingham properties of initial and us ER fluids are tested and compared. In addition, these ER fluids are applied to ER damper in order to evaluate damping force performance.

  • PDF