• Title/Summary/Keyword: Damping Sheet

Search Result 50, Processing Time 0.025 seconds

Characteristic of Vibration and Sound of Sound Insulation Panel for Transformer (변압기용 차음판의 진동 및 소음 특성)

  • Choe, C.R.;Choi, B.K.;Yang, B.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • Recently, demands for the reduction of noise generated by transformers have been increasing. Almost all the noise generated by a transformer is a result of magnetostrictive vibration in the core. The noise radiates into the atmosphere from the tank through the insulation oil. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer. However, this method has some disadvantages, for example, a large area is needed for equipment installation. In this paper, the vibration and noise effects which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel shape and damping sheet experimentally.

  • PDF

Characteristic Validation of High-damping Printed Circuit Board Using Viscoelastic Adhesive Tape (점탄성 테이프를 적용한 고댐핑 적층형 전자기판의 기본 특성 검증)

  • Shin, Seok-Jin;Jeon, Su-Hyeon;Kang, Soo-Jin;Park, Sung-Woo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.383-390
    • /
    • 2020
  • Wedge locks have been widely used for spaceborne electronics for mounting or removal of a printed circuit board (PCB) during integration, test and maintenance process. However, it can basically provide a mechanical constraint on the edge of the board. Thus, securing a fatigue life of solder joint for electronic package by limiting board deflection becomes difficult as the board size increases. Previously, additional stiffeners have been applied to reduce the board deflection, but the mass and volume increases of electronics are unavoidable. To overcome the aforementioned limitation, we proposed an application of multi-layered PCB sheet with viscoelastic adhesive tapes to implement high-damping capability on the board. Thus, it is more advantageous in securing the fatigue life of package under launch environment compared with the previous approach. The basic characteristics of the PCB with the multi-layered sheet was investigated through free-vibration tests at various temperatures. The effectiveness of the proposed design was validated through launch vibration test at qualification level and fatigue life prediction of electronic package based on the test results.

안정적 좌굴 모델을 통한 저감쇠 직물 시뮬레이션

  • Choe, Gwang-Jin;Go, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • We present a cloth simulation technique that is very stable yet also responsive. The stability of the technique allows the use of a large fixed time step when simulating various types of fabrics and character motions. The animations generated using this technique are strikingly realistic. Wrinkles form and disappear in a quite natural way, which is the feature that most distinguishes textile fabrics from other sheet materials. Significant improvements in both the stability and realism were made possible by overcoming the post-buckling instability as well as the numerical instability. The instability caused by buckling arises from a structural instability and therefore cannot be avoided by simply employing an implicit method. Addition of a damping force may help to avoid instabilities; however, it can significantly degrade the realism of the cloth motion. In this paper, a new buckling model based on immediate buckling assumption is proposed. A cloth element is assumed to reach a stable configuration immediately once it begins to buckle. This assumption makes it possible to simulate the fabric buckling stably without introducing any fictitious damping force. Consequently, it produces highly responsive cloth motion as well as improves the stability by modeling the fabric-specific buckling property adequately.

  • PDF

Postmortem analysis of a failed liquid nitrogen-cooled prepolarization coil for SQUID sensor-based ultra-low field magnetic resonance

  • Hwang, Seong-Min;Kim, Kiwoong;Yu, Kwon Kyu;Lee, Seong-Joo;Shim, Jeong Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.44-48
    • /
    • 2014
  • A liquid nitrogen-cooled prepolarization ($B_p$) coil made for ultra-low field nuclear magnetic resonance and magnetic resonance imaging (ULF-MR) designed to generate 7 mT/A was fabricated. However, with suspected internal insulation failure, the coil was investigated in order to find out the source of the failure. This paper reports detailed build of the failed $B_p$ coil and a number of analysis methods utilized to figure out the source and the mode of failure. The analysis revealed that pyrolytic graphite sheet linings put on either sides of the coil for better thermal conduction acted as an electrical bridge between inner and outer layers of the coil to short out the coil whenever a moderately high voltage was applied across the coil. A simple model circuit simulation corroborated the analysis and further revealed that the failed insulation acted effectively as a damping resistor of $R_{d,eff}=6{\Omega}$ across the coil. This damping resistance produced a 50 ms-long voltage tail after the coil current was ramped down, making the coil not suitable for use in ULF-MR, which requires complete removal of magnetic field from $B_p$ coil within milliseconds.

Numerical Simulation of the Delamination Behavior of Polymeric Adhesive Tapes Using Cohesive Zone Element (응집 영역 요소를 이용한 고분자 접착 테이프의 박리거동 모사)

  • Jang, Jinhyeok;Sung, Minchang;Yu, Woong-Ryeol
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.203-208
    • /
    • 2016
  • Metal and polymer sandwich composites, which are made of sheet metal sheath and polymer or fiber reinforced plastic core, have been reconsidered as an alternative to sheet metal due to their lightness and multifunctional properties such as damping and sound-proof properties. For the successful applications of these composites, the delamination prediction based on the adhesion strength is important element. In this study, the numerical simulation of the delamination behavior of polymeric adhesive tapes with metallic surfaces was performed using cohesive zone elements and finite element software. The traction-separation law of the cohesive zone element was defined using the fracture energy derived from peel mechanics and experimental results from peel test and implemented in finite element software. The peel test of the polymeric adhesive film against steel surface was simulated and compared with experiments, demonstrating reasonable agreement between simulation and experiment.

A Study on the Acoustical and Vibrational Characteristics of a Passenger Car(III) -Reduction of Interior Noise of Vehicle Compartment Model by Using Coupling Coefficient and Panel Contribution Factor- (승용차의 차실음향 및 차체진동에 관한 연구 (III) -연성계수 및 패널 기여도를 이용한 차실모델의 실내소음 저감-)

  • 김석현;이장무;김중희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • In the previous study, car interior noise was analyzed using structural acoustic mode coupling coefficients and noise response in vehicle compartment model was simulated by the developed special purpose program. As a continued study, this paper presents a practical scheme for the interior noise reduction of a passenger car. Noisy panels on the vehicle compartment wall could be easily identified by the analysis using mode coupling coefficients. Numerical simulation for noise reduction was carried out on a simplified vehicle compartment model by using panel contribution factor and the noise reduction effect was verified by the structural modification test using Steel Skin (damping sheet).

Studies on the Pore of Coating Layer and Printability (I)-Effect of Pigment Size on Pore of Coating Layer (도공층의 공극과 인쇄적성에 관한 연구(제 1보)-안료의 입자크기가 미치는 영향)

  • 김창근;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.26-34
    • /
    • 1999
  • This paper was intended to find out the relationship between optical and interior properties of coated paper and printability with the variation of particle size of ground calcium carbonate(GCC) by using Mercury Porosimeter, and to find out the pore properties of coated paper as well. The viscosity and water retention of coating color was increased and smothness, sheet gloss and porosity of coated paper were improved as the particle size of GCC was decreased. However, there was no difference in opacity and brightness of coated paper. The pore volume of coated paper was decreased, but the number of pores was drastically increased according to the decrease of the particle size of GCC. The weight of ink transferred into coated paper was increased in proportion to pore volume of coated paper. However, the weight of damping water and ink induced toward coated paper was slightly increased. Ink setting was accelerated printing gloss was not changed. Therefore, optical and interior properties of coated paper seemed to be affected by the pore property of coated paper and printability was also affected by it.

  • PDF

The Study on Vibration Isolation of Industrial Turbo-fan (산업용 터보팬의 진동절연에 관한 연구)

  • Park, Ik-Pil;Kim, Dong-Young;Kwon, Yong-Soo;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.609-615
    • /
    • 2001
  • A turbo-fan is easily exposed to noise and vibration as against other industrial machines and the majority of them is subject to be damaged by vibration. The most usual problem of vibration in a turbo-fan is resonance so the case of being composed of iron sheet structure with low strength like a turbo-fan should be taken seriously. In this paper, FFT(Fast Fourier Transform) and Order tracking method were used to analyze factors of vibration in a turbo-fan and hereby with proper selection of vibration isolator, we wanted to reduce vibration of base. After Order tracking, we knew resonance occurred in rotational frequency 23 Hz(1400 rpm) at the casing and the bearing. After the test of base vibration using vibration isolators, the spring isolator was more effective than the robber isolator in the base vibration and the vibration isolating is more effective in the case that the isolating pad is adhered to the bottom of the isolating spring.

  • PDF

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

Rice Seedling Establishment for Machine Transplanting VI. Effect of Mulching Materials on Raising Rice Seedling at Tray for Machine Transplanting (수도 기계이앙 육묘에 관한 연구 Ⅵ.제6보 상자육묘시 피복자재이용 효과)

  • Yun, Yong-Dae;Yang, Won-Ha;Kwang, Yong-Ho;Park, Seok-Hong;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 1986
  • To establish an efficient light control method using three covering materials on tunnel shaped rice seed-bed at greening stage after seedling emergence, four rice cultivars, Nampungbyeo, Taebaegbyeo, Seonambyeo, and Seomjinbyeo were sown on 15 April and 10 May in 1983 and 1984 respectively. After seedling emergence by a simplified emerging methods the seedling boxes were moved onto tunnel shaped seed-bed which was covered with combined matrials of PE film, silverpoly sheet, and spunbonded polyester fabric. For machine transplanting of rice seedlings in cases of early season and optimum season seeding in central part of Korea, PE film tunnel with silverpoly mulched, and PE film tunnel methods with spunbonded polyester fabric mulched reduced injuries of non-parasitic seedling damping-off and a albinism as affected by it, protected rice seedlings from injuries by extremely low temperature in the night, and reduced less differences in diurnal temperature than those in the other covering methods. At late season seeding for double cropping system of paddy field in southern part of Korea, a single silver-poly or a single spunbonded polyester fabric-covered tunnel method showed good green seedlings, and prevent-ed extreme rising of diurnal temperature by light interception in the tunnel.

  • PDF