• Title/Summary/Keyword: Damping Factor

Search Result 493, Processing Time 0.028 seconds

Experimental study of combustion stability assesment of injector (액체로켓엔진 안정성 예측을 위한 시험적 기법 연구)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Moon, Il-Yoon;Han, Yeoung-Min;Seol, Woo-Seok;Lee, Soo-Yong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.145-152
    • /
    • 2003
  • The objective of the present study is to develop methodology for the assesment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a full-scale injector has been employed in the study, which burns gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a full-scale thrust chamber. Single & multi split triplet injectors have been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable (사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구)

  • Seo, Ju-Won;Koh, Hyun-Moo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.

Modal Parameter Estimation of Membrane for Standard Microphone Sensitivity Calibration (표준 마이크로폰 감도 교정을 위한 진동막의 모달 파라미터 측정)

  • 권휴상;서상준;서재갑;박준홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.298-302
    • /
    • 2002
  • Equivalent volume estimation of the coupler and two coupled microphones has a key role in standard microphone pressure calibration. The equivalent volume of the microphone is determined by the dynamic characteristics of the diaphragm system and front cavity. Therefore the modal parameters of diaphragm system - natural frequency and damping fatter - should be measured explicitly for the estimation of the equivalent volume. The diaphragm system is composed of the vibrating diaphragm, back slit behind diaphragm, pressure equalization vent, and front cavity which are acoustically coupled. In the measurement, the electrostatic actuator was used to excite the system with the swept sine, and the frequency response was obtained. The close actuator in front of the diaphragm must influence the radiation impedance of the system, and then the modal parameters. From the measured frequency response, the natural frequency and the damping factor could be estimated with the Complex exponential method based on the Prony model and the zero crossing real and imaginary plot.

  • PDF

Analysis of optimum condition for the suspension system with torsion bar spring (Torsion bar spring을 가진 현수장치에 대한 최적조건 해석)

  • 손병진;신영철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.40-45
    • /
    • 1982
  • The spring constant and damping coefficient are vital factors of ride comfort and driving stability in the vibration of the vehicle which is mainly induced by a variety of the surface irregularity. This paper reviewed the optimum condition of the damping factor derived from the typical model of two mass-two degrees of freedom. Through the evaluation and discussion, it was presented that the spring of the torsion bar type was not effective for the driving stability in the large displacement of the wheel, and also that the damper with progressive performance has to be fundamentally selected to meet the requirement of the driving suability when this kind of spring is used as a suspension system of the vehicle.

  • PDF

A Study on the Buckling Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 좌굴 거동 특성에 관한 연구)

  • 한상을;유용주;이상주;이경수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-496
    • /
    • 1998
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent ye different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study, the earthquake response behavior is verified according to the factor of each shape, rise/span ratio, and damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

Sound Radiation From Infinite Beams Under the Action of Harmonic Point Forces (조화집중하중을 받는 무한보에서의 음향방사)

  • 김병삼;홍동표
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 1992
  • The problem of sound radiation from infinite elastic beams under the action of harmonic point forces is studied. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z = 0 and to be axially infinite. The beam material and the elastic foundation re assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results are examined as a function of wavenumber ratio$(\gamma)$ and stiffness factor$(\Psi)$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Sound Radiation From Infinite Beams Under the Action of Harmonic Moving Line Forces (조화분포이동하중을 받는 무한보에서의 음향방사)

  • 김병삼;이태근;홍동표
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.245-251
    • /
    • 1993
  • The problem of sound radiation from infinite elastic beams under the action on harmonic moving line forces is studies. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z=0 and to be axially infinite. The beam material and elastic foundation are assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results examined as a function of Mach number (M), wavenumber ratio$(\gamma{)}$ and stiffness factor $(\Psi{)}$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Vibrational Characteristics of Suspension Bridge by Full-Scale Test (실교 가진시험을 통한 현수교의 고유진동특성 연구)

  • Chog Sun-Kyu;Kim Sun-Kon
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.12-17
    • /
    • 2006
  • The bridge to be analyzed is a self-anchored suspension bridge which is constructed within the country. Forced vibration test was performed with oscillator for verification of safety, maintenance and management. In this study, the feasibility of deduction was verified with the modified analysis model by comparing natural frequency, natural mode and damping ratio of the real bridge, which are obtained from the vibration test of the whole bridge after construction of 3-dimensional self-anchored cable suspension bridge, with the eigenvalue of analytic computation model and evaluating them. As a result of study, the friction of bridge bearing must be considered to get the natural frequencies of flexural vibration, and evaluating the polar moment of inertia is critical factor in analysis modeling in case of torsional vibration. The logarithmic damping ratio of the test appeared to exceed the ordinary one assumed at the design phase.

Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element

  • Won, S.G.;Bae, S.H.;Jeong, W.B.;Cho, J.R.;Bae, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.15-30
    • /
    • 2012
  • A damped Timoshenko beam element is introduced for the DOF-efficient forced vibration analysis of beam-like structures coated with viscoelastic damping layers. The rotary inertia as well as the shear deformation is considered, and the damping effect of viscoelastic layers is modeled as an imaginary loss factor in the complex shear modulus. A complex composite cross-section of structures is replaced with a homogeneous one by means of the transformed section approach in order to construct an equivalent single-layer finite element model capable of employing the standard $C^{0}$-continuity basis functions. The numerical reliability and the DOF-efficiency are explored through the comparative numerical experiments.

Dynamics of multilayered viscoelastic beams

  • Roy, H.;Dutt, J.K.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.391-406
    • /
    • 2009
  • Viscoelastic materials store as well as dissipate energy to the thermal domain under deformation. Two efficient modelling techniques reported in literature use coupled (thermo-mechanical) ATF (Augmenting Thermodynamic Fields) displacements and ADF (Anelastic Displacement Fields) displacements, to represent the constitutive relationship in time domain by using certain viscoelastic parameters. Viscoelastic parameters are first extracted from the storage modulus and loss factor normally reported in hand books with the help of Genetic Algorithm and then constitutive relationships are used to obtain the equations of motion of the continuum after discretizing it with finite beam elements. The equations of motion are solved to get the frequency response function and modal damping ratio. The process may be applied to study the dynamic behaviour of composite beams and rotors comprising of several viscoelastic layers. Dynamic behaviour of a composite beam, formed by concentric layers of steel and aluminium is studied as an example.