• Title/Summary/Keyword: Damping Effect

Search Result 1,224, Processing Time 0.029 seconds

An Analysis of Rolling Performance for a Barge-Type FPSO (바아지형 FPSO의 횡운동 성능에 대한 연구)

  • CHOI YOON-RAK;KIM JIN-HA;SONG MYUNG-JAE;KIM YOUNG-SU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.183-187
    • /
    • 2004
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The squall section of FPSO causes a fair amount of viscous damping effect. Free roll decoy tests were conducted to estimate nonlinear roll damping for a barge-typ FPSO of three different loading conditions. The roll motion RAO was deduced by model tests in the wave condition of wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping using the results of free roll decay test. Tested roll performance in JONSWAP wave spectrum was compared with numerical results. These two results show good agreement, in spite of proximity in peak wave period and roll natural period.

  • PDF

Effect of Seal Wear on the Rotordynamics of a Multistage Turbine Pump (시일의 마멸이 다단 터빈 펌프 동특성에 미치는 영향)

  • 김영철;이동환;이봉주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1015-1023
    • /
    • 1997
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on its system behavior. Stiffness and damping coefficents of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annuler seals are calculated as functions of rotating speed as well as seal clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in vibration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Experimental Study on the Stiffness and Damping Coefficients of a Tilting Pad Journal Bearing (틸팅패드 저널베어링의 유막 강성 및 감쇠계수에 대한 실험적 연구)

  • Ha, Hyun-Cheon;Yang, Seong-Heon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.32-38
    • /
    • 1999
  • An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test bearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation frequency has quite a little effect on both stiffness and damping coefficients. Both direct stiffness and damping coefficients in the direction of bearing load decrease by the increase of shaft speed, but increase with the bearing load.

  • PDF

Experimental Study on the Stiffness and Damping Coefficients of a Tilting Pad Journal Bearing (틸팅패드 저어널 베어링의 유막 강성 및 감쇠 계수에 대한 실험적 연구)

  • Ha, Hynn Cheon;Yang, Seong Heon
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test bearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation frequency has quite a little effect on both stiffness and damping coefficients. Both direct stiffness and damping coefficients in the direction of bearing load decrease by the increase of shaft speed, but increase with the bearing load.

  • PDF

Effect of Normal and Shear Strains in Core Material on Vibrational Characteristics of Aluminum Honeycomb Core Sandwich Plate (심재의 수직 및 전단 변형을 고려한 알루미늄 하니컴코아 샌드위치 평판의 진동특성 해석)

  • 손충열;김익태;변효인
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.89-94
    • /
    • 2000
  • Because the structural elements used in the automobile, astronautic and ship industries are put in dynamic loading environments, much interest is given to the damping of the structural elements, as well as high flexural rigidity and strength per density. Therefore, in this study, the structural damping value of the aluminum honeycomb sandwich plate(AHCP) has been experimentally extracted, and directly applied to the finite element, for the dynamic analysis of the plate considering the structural damping. The analysis results of this theory was compared with the results of the actual modal analysis method. It was observable that the two analyses concurred, establishing the structural damping and analysis method of the AHSP.

  • PDF

Experiment on Vibration Control of Beam Using Active Constrained-Layer Damping Treatment (능동구속감쇠 기법을 이용한 보의 진동제어 실험)

  • 강영규;최진영;김재환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.52-57
    • /
    • 2001
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design a structure with maximum possible damping capacity. Piezoelectric film is used as a sensor and piezoceramic as an actuator for the negative velocity feedback control. The experimental results are compared with those by the finite element analysis. This paper shows the effectiveness of active constrained-layer damping treatment through experiments, and we have carried out an experiment to study the effect of beam thickness.

  • PDF

Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems (선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향)

  • Yoon, Jang-Sang;Lee, Yang-U;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

Impact Analysis For a 2-DOF Shock Absorbing System with Multi-Step Damping Coefficient (다단계 감쇠계수를 갖는 2자유도계 충격흡수장치의 충격해석)

  • 김성윤;심재준;한동섭;안성찬;한근조;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.871-874
    • /
    • 2002
  • Many malfunctions take place in container crane spreader due to impact. So we designed a 2DOF hydraulic impact absorbing system with multi-step damping coefficient and studied the effect of orifice's interval and damping coefficient. The damping coefficient of upper piston was found to be 180 N.s/m, and the orifice's interval to be 9mm, the max reaction force and the average reaction force might be lowest. Compared with a general 2-DOF impact absorbing system, the max reaction force reduced by 46%., and average reaction force reduced by 5%.

  • PDF

Improvement of aeroelastic stability of hingeless helicopter rotor blade by passive piezoelectric damping

  • Yun, Chul-Yong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.54-64
    • /
    • 2006
  • To augment weakly damped lag mode stability of a hingeless helicopter rotor blade in hover, piezoelectric shunt with a resistor and an inductor circuits for passive damping has been studied. A shunted piezoceramics bonded to a flexure of rotor blade converts mechanical strain energy to electrical charge energy which is dissipated through the resistor in the R-L series shunt circuit. Because the fundamental lag mode frequency of a soft-in-plane hingeless helicopter rotor blade is generally about 0.7/rev, the design frequency of the blade system with flexure sets to be so. Experimentally, the measured lag mode frequency is 0.7227/rev under the short circuit condition. Therefore the suppression mode of this passive damping vibration absorber is adjusted to 0.7227/rev. As a result of damping enhancement using passive control, the passive damper which consists of a piezoelectric material and shunt circuits has a stabilizing effect on inherently weakly damped lag mode of the rotor blades, at the optimum tuning and resistor condition.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 하종용;안영공;양보석;정석권;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF