• Title/Summary/Keyword: Damping Behavior

Search Result 651, Processing Time 0.026 seconds

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping

  • Yamaguchi, Hiroki;Matsumoto, Yasunao;Yoshioka, Tsutomu
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.523-541
    • /
    • 2015
  • Structural health monitoring of steel truss bridge based on changes in modal properties was investigated in this study. Vibration measurements with five sensors were conducted at an existing Warren truss bridge with partial fractures in diagonal members before and after an emergency repair work. Modal properties identified by the Eigensystem Realization Algorithm showed evidences of increases in modal damping due to the damage in diagonal member. In order to understand the dynamic behavior of the bridge and possible mechanism of those increases in modal damping, theoretical modal analysis was conducted with three dimensional frame models. It was found that vibrations of the main truss could be coupled internally with local vibrations of diagonal members and the degree of coupling could change with structural changes in diagonal members. Additional vibration measurements with fifteen sensors were then conducted so as to understand the consistency of those theoretical findings with the actual dynamic behavior. Modal properties experimentally identified showed that the damping change caused by the damage in diagonal member described above could have occurred in a diagonal-coupled mode. The results in this study imply that damages in diagonal members could be detected from changes in modal damping of diagonal-coupled modes.

Numerical Analysis of Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator (음향공명기가 장착된 가스터빈 연소실의 음향장 해석)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1110-1115
    • /
    • 2004
  • Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes.

  • PDF

A Numerical Study on Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator (음향공명기가 장착된 가스터빈 연소실의 음향장 해석)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.95-102
    • /
    • 2005
  • Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed. mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes.

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

A Study on Damping Value of Bridge in High-speed Railway (고속전철 교량 감쇠 연구)

  • 최은석;진원종;곽종원;박성용;강재윤;김영진;김병석
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 2001
  • The dynamic characteristics such as natural frequency, mode shape and damping ratio are most important parameters in the high-speed railway bridges rather than general roadway bridges. Also, the need to know the dynamic behavior of bridges greatly increased in recent years. In the early of 1990s, to design the high-speed railway bridges, damping ratio recommended in general code was 2.5~7.5%. However, these values were not applied in all cases. Therefore, obtaining the damping value of specific structures is important to get the correct variable for design of high-speed railway bridges. The purpose of this study is mainly to obtain the damping ratio of high-speed railway bridges. The average damping ratio of high-speed railway bridges evaluated from a field test is about 2.4%.

  • PDF

Experimental Study of the Role of Gas-Liquid Scheme Injector as an Acoustic Resonator in a Combustion Chamber

  • Kim Hak-Soon;Sohn Chae-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.896-904
    • /
    • 2006
  • In a liquid rocket engine, the role of gas-liquid scheme injector as an acoustic resonator or absorber is studied experimentally for combustion stability by adopting linear acoustic test. The acoustic-pressure signals or responses from the chamber are monitored by acoustic amplitude. Acoustic behavior in a rocket combustor with a single injector is investigated and the acoustic-damping effect of the injector is evaluated for cold condition by the quantitative parameter of damping factor as a function of injector length. From the experimental data, it is found that the injector can play a significant role in acoustic damping when it is tuned finely. The optimum tuning-length of the injector to maximize the damping capacity is near half of a full wavelength of the first longitudinal overtone mode traveling in the injector with the acoustic frequency intended for damping in the chamber. When the injector has large diameter, the phenomenon of the mode split is observed near the optimum injector length and thereby, the acoustic-damping effect of the tuned injectors can be degraded.

Stress-related energy dissipation and damping model of concrete considering moisture content

  • Liu, Baodong;Zhang, Pengyuan;Lyu, Wenjuan
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.423-431
    • /
    • 2022
  • Although the influence of moisture content on the mechanical properties of concrete has been studied for a long time, research related to its influence on the damping and energy dissipation property of concrete structure is still very limited. In this paper, the relationship between damping property and moisture content of concrete using cyclic uniaxial compression is firstly presented, and the mechanism of the influence of moisture content on concrete damping and energy dissipation capacity is analyzed. Based on the experimental research, moisture-related damping and energy dissipation model is proposed. Results show that the dissipated energy of concrete and loss factor increase as the moisture content increasing. The energy dissipation coefficient reflecting the influence of stress level of concrete under cyclic load, decreases first and then increases as the moisture content increasing. The mechanism of moisture-related energy dissipation behavior can be divided into the reactive force of water, the development of the internal micro cracks and the pore water pressure. Finally, the proposed moisture-related damping and energy dissipation model are verified.

Stability augmentation of helicopter rotor blades using passive damping of shape memory alloys

  • Yun, Chul-Yong;Kim, Dae-Sung;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.137-147
    • /
    • 2006
  • In this study, shape memory alloy damper with characteristics of pseudoelastic hysteresis for helicopter rotor blades are investigated. SMAs can be available in damping augmentation of vibrating structures. SMAs show large hysteresis in the process of pseudoelastic austenite-martensite phase transformation which takes place while subjected to loading above the austenite finish temperature. Since SMAs display pseudoelastic hysteresis behavior over large strain ranges, a significant amount of energy dissipation is possible. A damper can be designed with SMA wires prestressed to a baseline level somewhere in the middle of the pseudoelastic stress range. An experimental study of the effects of pre-strain and cyclic strain amplitude as well as frequency on the damping behavior of pseudoelastic shape memory alloy wires are performed. The effects of the shape memory alloy damper on aeroelastic and ground resonance stability of helicopter are studied. In aeroelastic stability, the dynamic characteristics of blades related to pitch angle and the amplitude of lag motion for the rotor equipped with SMA damper were examined. The performance of SMA damper on ground resonance instability are presented through the frequencies and modal damping with respect to rotating speed.

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.