• 제목/요약/키워드: Damping/Friction effect

검색결과 76건 처리시간 0.022초

진동해머에 의해 시공되는 말뚝의 해석기법 제고 (Enhancement of the Technique for Analyzing a Pile Driven by Vibro Hammer)

  • 이승현
    • 한국산학기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.3596-3601
    • /
    • 2015
  • 진동해머에 의해 시공되는 말뚝의 거동을 분석할 목적으로 개발된 기존의 프로그램을 개선하고자 하였다. 진동해머-말뚝-지반으로 구성되는 진동시스템의 기존 지배방정식에 지반저항의 댐핑효과와 클러치마찰력을 추가하였다. 또한, 개발된 해석기법의 하중전이곡선을 모사하는 수정 Ramberg-Osgood 모델의 매개변수를 재산정하여 해석기법을 개선하고자 하였다. 수정된 프로그램에 의한 해석결과를 현장시험결과와 비교해 볼 때 시간에 따른 말뚝의 변위 및 하중전이거동이 현장시험결과에 좀 더 유사하였다. 개발된 프로그램에 의한 말뚝 관입깊이별 관입속도를 상용 프로그램에 의한 결과 및 현장시험결과와 비교해 볼 때 상용프로그램보다 훨씬 더 현장시험결과에 가까웠다.

Seismic vulnerability of sliding isolation concrete rectangular liquid storage tanks

  • Cheng, Xuansheng;Yin, Siyuan;Chen, Wenjun;Jing, Wei
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.503-515
    • /
    • 2022
  • Based on the sliding isolation concrete LSS (liquid-storage structure), the specific seismic vulnerability is analyzed according to the general failure mode. In this study, 12 seismic inputs with different characteristics are used, and their acceleration peak values are modulated. By inputting these waves to the sliding isolation concrete storage structure, the finite-element models of different concrete rectangular LSSs are obtained and analyzed, and the failure probabilities are obtained according to the IDA (incremental dynamic analysis) curves of the structure. The results show that when the seismic acceleration peak value gradually increases from 0.1 g to 1.0 g, the failure probability of LSS gradually increases with the increase in friction coefficient. However, the failure probability of a sliding isolation LSS is less than 100% and far less than the failure probability of a non-isolated rectangular LSS, which shows that an isolated liquid storage structure continues working under a big earthquake. Thus, the sliding isolation for the concrete LSS has a significant damping effect.

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

에어 스테이지의 동적 특성에 미치는 가속도 및 감속도의 영향 (Effect of the Acceleration and Deceleration on the Dynamic Characteristics of an Air Stage)

  • 박상준;이재혁;박상신;김규하
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.39-46
    • /
    • 2020
  • Air stages are usually applied to precision engineering in sectors such as the semiconductor industry owing to their excellent performance and extremely low friction. Since the productivity of a semiconductor depends on the acceleration and deceleration performance of the air stage, many attempts have been made to improve the speed of the stage. Even during sudden start or stop sequences, the stage should maintain an air film to avoid direct contact between pad and the rail. The purpose of this study is to quantitatively predict the dynamic behavior of the air stage when acceleration and deceleration occur. The air stage is composed of two parts; the stage and the guide-way. The stage transports objects to the guideway, which is supported by an externally pressurized gas bearing. In this study, we use COMSOL Multiphysics to calculate the pressure of the air film between the stage and the guide-way and solve the two-degree-of-freedom equations of motion of the stage. Based on the specified velocity conditions such as the acceleration time and the maximum velocity of stage, we calculate the eccentricity and tilting angle of the stage. The result shows that the stiffness and damping of the gas bearing have non-linear characteristics. Hence, we should consider the operating conditions in the design process of an air stage system because the dynamic behavior of the stage becomes unstable depending on the maximum velocity and the acceleration time.

사판식 액시얼 피스톤 펌프의 가변용량 시스템의 특성에 관한 연구 (A Study on Characteristics of a Compensator System for Swash Plate Type Axial Piston Pump)

  • 김신;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.15-22
    • /
    • 1998
  • Recently, the importance of variable displacement piston pump is increasing in industrial world. Especially, most consumers require various range of pressures and flow rates. Pressure compensator is a system controlling flow rate in piston pump at low cost and, therefore, satisfies the need of consumers. However, the system has serious problems, such as response and leakage. The response and leakage are affected by clearance between actuator piston and cylinder, roughness of surface, and spool overlap. In this paper, these effects are investigated experimentally, and optimal clearance and chamfer is obtained. While diameter of cylinder is fixed and diameter of actuator piston is changed in this experiment, response and leakage are measured. Also parameters such as roughness and processing accuracy are changed for piston of fixed clearance. Experimental setup modelled into several parts of actuator piston, cylinder, spool, and swash plate. Input pressure is changed by function generator and proportional valve. The result of this experiment shows that leakage increases very much in proportion to the increase of clearance, and especially leakage occurs enormously when clearance is more than 0.002. The response is not good because as clearance increases leakage increases and as clearance decreases viscous damping effect increases. Accordingly, it is found out that optimal clearance range exists for tile response, within about 0.0012∼0.0014, at this time. Futhermore, the better roughness and geometrical accuracy of actuator piston are, the smaller are leakage and friction. The paper informs that response and leakage are influenced by and geometrical accuracy of actuator piston, roughness of surface, and the clearance between actuator piston and cylinder, and that optimal design of actuator piston in the pressure compensator is possible.

순목 작용에 의한 콘택트 렌즈의 운동 모델 (Model on the Contact Lens Movement from Eye-lid Blinking)

  • 김대수
    • 한국안광학회지
    • /
    • 제9권1호
    • /
    • pp.145-159
    • /
    • 2004
  • 순목(blinking)에 따른 콘택트 렌즈의 운동을 예측할 수 있는 수학적인 모델과 컴퓨터 수치 해석프로그램을 안검(eyelid)의 가속도, 안검-콘택트 렌즈 사이의 미끄럼 마찰력 등을 고려한 운동(회전) 방정식으로부터 도출하였다. 순목시 안검에 의한 콘택트 렌즈의 운동은 안검이 콘택트 렌즈를 누르는 압력, 순목에 소요되는 시간, 콘택트 렌즈의 직경 등 인자에 영향을 받으며, 프로그램 결과로부터 콘택트 렌즈의 피팅에 중요한 요소인 순목 직후 평형 상태에서 이탈된 콘택트 렌즈의 위치에 대한 예측이 가능하였다. 순목 시간이 짧을수록, 콘택트 렌즈의 직경이 클수록 렌즈의 평형 이탈 거리는 크게 증가하였다. 안검의 압력 증가는 콘택트 렌즈 직경이나 순목 시간에 비해 그 영향은 미미하였다. 순목 후 콘택트 렌즈의 각막위 평형 위치로의 귀환은 순목 시간이 적절한 경우에는 순목 종료 직후의 렌즈 위치에 그다지 영향을 받지 않고 빠르게 이루어지지만 콘택트 렌즈의 직경이 큰 경우에는 렌즈 진동이 급격히 느려지기 때문에 평형 위치로 되돌아오는데 시간이 많이 걸리게 될 것이다. 따라서 직경이 대단히 큰 콘택트 렌즈를 착용한 상태에서 순목 시간이 짧은 경우에는 다음 순목때까지 콘택트 렌즈는 평형 위치에 자리잡지 못하는 결과가 발생하여 순목이 계속됨에 따라 영구 고착 등 현상이 발생할 수도 있을 것이다.

  • PDF