• Title/Summary/Keyword: Damper hinge

Search Result 16, Processing Time 0.027 seconds

A Structural Analysis of Tsunami-proof Damper in Nuclear Power Plant (원자력 발전소에서 쓰나미 방지용 댐퍼에 대한 구조해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.603-609
    • /
    • 2020
  • The purpose of this study is to research dampers, which are applied mainly to buildings adjacent to the coast, such as nuclear facilities, and used for ventilation and can safely protect lives and equipment in emergency situations. Comparing the equivalent stress for three models with hinge reinforcement and support reinforcement based on the early design model for Damper, in the Base model, the highest stress occurred in the part of hinge, especially in the centrally mounted hinge, and after reinforced the hinge, it was occurred in the rear support. For models reinforced hinges and supports, it is considered that reinforcement for stiffness will be required in the future as it entered within the range of allowable stress. For the safety factor distribution, the minimum safety ratio was sufficiently secured at least 1 and was high at the edge of the Damper frame and the Blade. As the hinge was reinforced, the safety factor distribution of Blade was increased, and it was verified that the safety factor was secured through the support reinforcement.

Development of an Eddy Current Type Magnetic Floor Hinge

  • Lee, Kapjin;Kim, Chulsoo;Park, Kyihwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.118.4-118
    • /
    • 2002
  • $\textbullet$ Magnetic floor hinge $\textbullet$ Recovering torque $\textbullet$ Eddy Currents $\textbullet$ Magnetic damper $\textbullet$ Optimal design $\textbullet$ Cost optimization

  • PDF

Beam-Column Junction Type Damper of Seismic Performance Enhancement for Structures (구조물의 내진성능 보강을 위한 보-기둥 접합형 감쇠장치)

  • Noh, Jung-Tae;Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.855-863
    • /
    • 2009
  • In this study, a beam-column junction type damper is proposed which saves the inner and outer space for the installation of damping devices and allows easy adjustment of control performance The result of the numerical analysis indicated that the displacement response and base shear of a single degree of freedom system by seismic load, El Centro 1940 was reduced with yield moment of the joint hinge and the specific yield moment ratio $\delta$ of the joint hinge existed for the optimal seismic performance. In addition, the dynamic nonlinear characteristics, effects of yielding and dependence of natural period of bi-linear system with the junction type damper is identified. The analysis of multi-degree of freedom system showed that responses of the controlled structures was reduced significantly as the number of a story increases and yield moment ratio decreases when the system is excited by seismic load and sine wave. On top of that, it was also observed that energy dissipation at the joint connected with the dampers was remarkable during excitation.

  • PDF

Seismic performance enhancement of a PCI-girder bridge pier with shear panel damper plus gap: Numerical simulation

  • Andika M. Emilidardi;Ali Awaludin;Andreas Triwiyono;Angga F. Setiawan;Iman Satyarno;Alvin K. Santoso
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.69-82
    • /
    • 2024
  • In the conventional seismic design approach for a bridge pier, the function of the stopper, and shear key are to serve as mechanisms for unseating prevention devices that retain and transmit the lateral load to the pier under strong earthquakes. This frequently inflicts immense shear forces and bending moments concentrated at the plastic hinge zone. In this study, a shear panel damper plus gap (SPDG) is proposed as a low-cost alternative with high energy dissipation capacity to improve the seismic performance of the pier. Therefore, this study aimed to investigate the seismic performance of the pre-stressed concrete I girder (PCI-girder) bridge equipped with SPDG. The bridge structure was analyzed using nonlinear time history analysis with seven-scaled ground motion records using the guidelines of ASCE 7-10 standard. Consequently, the implementation of SPDG technology on the bridge system yielded a notable decrease in maximum displacement by 41.49% and a reduction in earthquake input energy by 51.05% in comparison to the traditional system. This indicates that the presence of SPDG was able to enhance the seismic performance of the existing conventional bridge structure, enabling an improvement from a collapse prevention (CP) level to an immediate occupancy (IO).

Seismic performance of a rocking bridge pier substructure with frictional hinge dampers

  • Cheng, Chin-Tung;Chen, Fu-Lin
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.501-516
    • /
    • 2014
  • The rocking pier system (RPS) allows the columns to rock on beam or foundation surfaces during the attacks of a strong earthquake. Literatures have proved that seismic energy dissipated by the RPS through the column impact is limited. To enhance the energy dissipation capacity of a RPS bridge substructure, frictional hinge dampers (FHDs) were installed and evaluated by shaking table tests. The supplemental FHDs consist of two brass plates sandwiched by three steel plates. The strategy of self-centering design is to isolate the seismic energy by RPS at the columns and then dissipate the energy by FHDs at the bridge deck. Component tests of FHD were first conducted to verify the friction coefficient and dynamic characteristic of the FHDs. In total, 32 shaking table tests were conducted to investigate parameters such as wave forms of the earthquake (El Centro 1940 and Kobe 1995) and normal forces applied on the friction dampers. An analytical model was also proposed to compare with the tested damping of the bridge sub-structure with or without FHDs.

Studies on vibration control effects of a semi-active impact damper for seismically excited nonlinear building

  • Lu, Zheng;Zhang, Hengrui;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.95-110
    • /
    • 2019
  • The semi-active impact damper (SAID) is proposed to improve the damping efficiency of traditional passive impact dampers. In order to investigate its damping mechanism and vibration control effects on realistic engineering structures, a 20-story nonlinear benchmark building is used as the main structure. The studies on system parameters, including the mass ratio, damping ratio, rigid coefficient, and the intensity of excitation are carried out, and their effects both on linear and nonlinear indexes are evaluated. The damping mechanism is herein further investigated and some suggestions for the design in high-rise buildings are also proposed. To validate the superiority of SAID, an optimal passive particle impact damper ($PID_{opt}$) is also investigated as a control group, in which the parameters of the SAID remain the same, and the optimal parameters of the $PID_{opt}$ are designed by differential evolution algorithm based on a reduced-order model. The numerical simulation shows that the SAID has better control effects than that of the optimized passive particle impact damper, not only for linear indexes (e.g., root mean square response), but also for nonlinear indexes (e.g., component energy consumption and hinge joint curvature).

Seismic upgrading of structures with different retrofitting methods

  • Guneyisi, Esra Mete;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • This paper presents an analytical study aimed at evaluating the seismic performance of steel moment resisting frames (MRFs) retrofitted with different approaches. For this, 3, 6 and 12 storey MRFs having four equal bays of 5 m were selected as the case study models. The models were designed with lateral stiffness insufficient to satisfy code drift and hinge limitations in zones with high seismic hazard. Three different retrofit strategies including traditional diagonal bracing system and energy dissipation devices such as buckling restrained braces and viscoelastic dampers were used for seismic upgrading of the existing structures. In the nonlinear time history analysis, a set of ground motions representative of the design earthquake with 10% exceedance probability in fifty years was taken into consideration. Considering the local and global deformations, the results in terms of inter-storey drift index, global damage index, plastic hinge formations, base shear demand and roof drift time history were compared. It was observed that both buckling-restrained braces and viscoelastic dampers allowed for an efficient reduction in the demands of the upgraded frames as compared to traditional braces.

Dynamic Analysis of a Deployable Space Structure Using Passive Deployment Mechanism (수동형 전개힌지를 이용한 전개형 우주 구조물의 전개 동특성 해석)

  • Choi, Young-Jun;Oh, Hyun-Ung;Choi, Yong-Hoon;Lee, Kyung-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2008
  • The deployable space structure is necessary to minimize the satellite volume and launch cost. For the deployment, passive deployment mechanism has widely been used to attenuate a latch shock induced when the structure is just fully deployed. To reduce the latch shock, viscous damper is applied to the passive deployment mechanism and it can control the deployment speed of the structure. In this paper, dynamic analysis of the deployable space structure using the passive deployment mechanism with the viscous damper has been performed. The viscous damping values have been optimized through numerical simulation. The satellite's attitude influenced by pyro activation for the release of the structure has also been investigated.

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.