• Title/Summary/Keyword: Damper displacement

Search Result 349, Processing Time 0.022 seconds

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.

A Study on Measuring Clutch Dynamic Torque (클러치 동적 토크 계측에 관한 연구)

  • Lee, Sung-Koo;Kim, Dong-Young;Hur, Man-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.65-70
    • /
    • 2012
  • Torque fluctuation of engine generate gear rattle noise of transmission and many researches have been studied to decrease rattle noise by adjusting clutch damper system. So design optimization of clutch system is very important to decrease rattle noise and need knowing clutch dynamic torque at real vehicle driving condition. This makes it possible to measure clutch dynamic torque by using a small-size magnetic sensor. We install a small-size magnetic sensor on the input shaft of the transmission and measure the relative angular displacement between clutch hub and disc plate. We can obtain the clutch torque correspond to the angular displacement in the clutch torsional characteristics test. The object of this research is to measure clutch dynamic torque on real vehicle condition. Therefore, Clutch dynamic torque is very useful for investigating operating range of clutch according to engine torque and predicting the damping performance of torsional vibration on the powertrain.

Seismic Fragility Functions of a SDOF Nonlinear System with an Energy Dissipation Device (에너지 소산형 감쇠기가 설치된 단자유도 비선형 시스템의 지진취약도 함수)

  • Park, Ji-Hun;Yun, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2012
  • Seismic fragility functions are derived for probabilistic evaluation of seismic control performance of energy dissipation devices installed in reinforced concrete structures. Displacement-dependent dampers are added to the nonlinear single-degree-of-freedom systems with different natural periods and hysteretic characteristics of which stiffness and strength has uncertainty. Nonlinear time history analysis is conducted for those SDOF systems and the result is processed statistically to obtain seismic fragility functions in the form of log normal distribution. Variation of seismic fragility functions for different parameters of SDOF systems and dampers are investigated and the seismic control performance is assessed probabilistically.

Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing;Zhao, Yong
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.557-572
    • /
    • 2012
  • This paper focuses on the vibration control of long-span reticulated steel structures under multi-dimensional earthquake excitation. The control system and strategy are constructed based on Magneto-Rheological (MR) dampers. The LQR and Hrovat controlling algorithm is adopted to determine optimal MR damping force, while the modified Bingham model (MBM) and inverse neural network (INN) is proposed to solve the real-time controlling current. Three typical long-span reticulated structural systems are detailedly analyzed, including the double-layer cylindrical reticulated shell, single-layer spherical reticulated shell, and cable suspended arch-truss structure. Results show that the proposed control strategy can reduce the displacement and acceleration effectively for three typical structural systems. The displacement control effect under the earthquake excitation with different PGA is similar, while for the cable suspended arch-truss, the acceleration control effect increase distinctly with the earthquake excitation intensity. Moreover, for the cable suspended arch-truss, the strand stress variation can also be effectively reduced by the MR dampers, which is very important for this kind of structure to ensure that the cable would not be destroyed or relaxed.

Evaluation of Deformation Capacity of Various Steel Springs Subjected to Tensile Loading or Uniaxial Cyclic Loading (인장하중 및 반복하중을 받는 강재 스프링의 변형 성능 평가)

  • Kwon, Hee-Yong;Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sanghee;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, to evaluate the possibility of using a steel spring as a displacement-dependent damping device, tensile loading and cyclic loading tests were performed. The main experimental variables were the type of steel (SAE9254 and SS275), the spring constant (700 N/mm, 1,000 N/mm, and 1,400 N/mm), and the presence or absence of heat treatment for SAE9254. As a result of the tensile test, the ratios of the measured spring constant to the design spring constant of the steel springs made with SAE9254 ranged from 1.08 to 1.13, while the ratios of the design spring constant and the measured spring constant of the steel springs made with SS275 ranged from 0.86 to 0.97. After yielding, the slope values of the load-displacement curve of the SAE9254 with/without heat treatment were about 240~251 N/mm and 92 N/mm, respectively, but the slope values of the load-displacement response of SS275 were almost zero. According to the uniaxial cyclic loading test results, all specimens were satisfied with three conditions for a displacement-dependent damping device in KDS 41 17 00 (2019): the maximum force and minimum force at zero displacement, the maximum force and minimum force at the maximum displacement, and the energy dissipation capacity. In addition, the equivalent damping ratios of steel springs made with SAE9254(non-heat treatment) and SS275 were approximately 2.8 times and 1.9 times greater, respectively, than that of steel springs made with SAE9254.

Mitigating Seismic Response of the RC Framed Apartment Building Structures Using Stair-Installation Kagome Damping System (계단 설치형 카고메 감쇠시스템을 활용한 철근콘크리트 라멘조 공동주택의 지진응답 개선)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun;Hwang, Jae-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.23-30
    • /
    • 2018
  • Recently, there are highly interests on structural damping to improve resistance of seismic and wind. It has been frequently used hysteresis damping devices made of steel because of economic efficiency, construction, and maintenance. This paper presents the effective reduction of seismic response by using Kagome damping system(SKDS) in rahmen system apartment building. The proposed system is designed to be activated by the relative displacement between the building and the stairs. It is performed nonlinear dynamic analysis to review the effects of earthquake response reduction for the 20-stories rahmen framed apartment building. In the analysis of the SKDS system, the reduction of maximum response displacement, maximum response acceleration and layer shear force are compared with the seismic design, and the result show that allowable story displacement is satisfied with Korean Building Code (KBC 2016).

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang;Liyuan Cao;Chunxiang Li
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.

Seismic retrofit of a framed structure using damped cable systems

  • Naeem, Asad;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2018
  • The purpose of this study is to investigate the effectiveness of damped cable systems (DCS) to mitigate the earthquake-induced responses of a building frame structure. The seismic performance of the DCS is investigated using the fragility analysis and life cycle cost evaluation of an existing building retrofitted with the DCS, and the results are compared with the structure retrofitted with conventional fluid viscous dampers. The comparison of the analysis results reveals that, due to the self-centering capability of the DCS, residual displacement approximately reaches to zero for the structure retrofitted with the DCS. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with the conventional fluid viscous damper (VD), especially under the severe ground motions. It is also observed that both the initial and the life cycle costs of the DCS seismic retrofitting technique is lesser compare to the structure retrofitted with the VD.

A Study on the design Optimization of Thickness of Machiningcenter Bed under Dynamic Loading by using Genetic Algorithm (유전적 알고리듬을 적용하여 머시닝센터 베드두께의 동하중을 고려한 최적설계에 관한 연구)

  • 조백희
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 1999
  • This paper presents resizing design optimization method by utilizing genetic algorithm(GA), which consists of three basic operators : reproduction, crossover and mutation. The fitness and penalty function for resizing optimization problem are defined, and the flowchart of the developed computer program along with the descriptions of each modules is presented. Also, modelling for flexible-body dynamic analysis is presented. The model is composed of bodies, joints, and force elements such as translational spring-damper-actuator. The design objects si to determine the wall thickness for minimum weight under dynamic displacement constraint.

  • PDF

Experimental Study on Seismic Performance of Base-Isolated Bridge

  • Chung, Woo Jung;Yun, Chung Bang;Kim, Nam Sik;Seo, Ju Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.51-60
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrated that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation systems using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminate rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the deck acceleratino and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF