• 제목/요약/키워드: Damper Design

검색결과 818건 처리시간 0.022초

Random Tabu 탐색법을 이용한 점성 비틀림 진동감쇠기의 최적설계 (Optimum Design of Viscous Torsional Vibration Damper Using Random Tabu Search Method)

  • 김유신;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.301-306
    • /
    • 1996
  • A torsional damper is generally used to reduce the torsional vibration which occurs at a crankshaft of a multi-cylinder high speed diesel engine. Vibration amplitude should be estimate by the appropriate simulation model to determine the optimum specifications of damper. In this paper a new method which was based on the random tabu search method(RTSM) would be introduced for the viscous damper design to optimize the damping performance. The result was ascertained by comparing with conventional rubber damper.

  • PDF

고성능 MR댐퍼의 설계 (High-performance Magneto-rheological Damper Design)

  • 이종석;백운경
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.470-477
    • /
    • 2004
  • This study shows the design process of a MR damper for semi-active suspension systems. Damping force characteristics of the designed damper was predicted through the flow analysis and magnetic analysis. The predicted results were compared with the experimental results and the initial design specification was modified according to the results.

사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구 (Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable)

  • 서주원;고현무
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.

원형 마찰 감쇠기 특성의 실험식 개발 (Development an Empirical Formula for the Friction Coefficient of a Circular Friction Damper)

  • 신용우;이상권
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.491-498
    • /
    • 2011
  • The structural vibration due to earthquake or outside impact causes serious problem for building safety. A dynamic model of a friction damper which can be constructed and installed easily is needed to reduce the vibration of the building. In this paper, the experimental equation of a circular friction damper is derived and designed for reduction of a earthquake vibration of a building. The developed experimental equation is defined to simply design the capacity on design of the circular friction damper based on the results of the performance test. Finally this experimental equation can be used for the design of a circular friction damper.

반능동 진동 흡수 장치의 설계 및 제어 (Design and Control of Semi-Active Tuned Mass Damper)

  • 곽문규;신지환;양동호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.23-25
    • /
    • 2014
  • This paper is concerned with design and control of semi-active tuned mass damper. The equipment consists of permanent magnet and coil. If current flowing in coil is changed, the natural frequency of the semi-active tuned mass damper is changed. In previous research, a current flowing in coil was changed manually. In this time, we design the feedback control system. The experiment proceed that the excitation frequency is shifted from 4Hz to 9Hz. The result of experiment proves that semi-active tuned mass damper is better than passive tuned mass damper in performance of absorbing vibration.

  • PDF

스프링 댐퍼를 이용한 가동 자석형 리니어 진동 엑추에이터의 설계 및 특성해석 (Design and Characteristic Analysis of Moving Magnet Type Linear Oscillatory Actuator with Spring Damper)

  • 조성호;김덕현;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권1호
    • /
    • pp.9-15
    • /
    • 2003
  • This Paper deals with the design of Moving Magnet type Linear Oscillatory Actuator(MM-LOA) using spring damper based on the design procedure and the characteristic analysis. MM-LOA is applied to variable load such as vaccum pump and compressor, The structure of piston type is selected to reduce a noise. MM-LOA has over-displacement in starting state because of the low inertia of mover To improve the starting characteristic, spring damper is used. The optimum spring constant of spring damper is detected and in consideration of spring damper, MM-LOA redesigned. The parameter is calculated by Finite Element Method(FEM). For the dynamic characteristic analysis, time differential method composed of voltage and kinetic equation is used. The propriety of the improved model is verified through the experimental results.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization

  • Chen, Genda;Garrett, Gabriel T.;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.539-556
    • /
    • 2004
  • In this paper, the design, fabrication and characterization of a piezoelectric friction damper are presented. It was sized with the proposed practical procedure to minimize the story drift and floor acceleration of an existing 1/4-scale, three-story frame structure under both near-fault and far-field earthquakes. The design operation friction force in kip was numerically determined to range from 2.2 to 3.3 times the value of the peak ground acceleration in g (gravitational acceleration). Experimental results indicated that the load-displacement loop of the damper is nearly rectangular in shape and independent of the excitation frequency. The coefficient of friction of the damper is approximately 0.85 when the clamping force on the damper is above 400 lbs. It was found that the friction force variation of the damper generated by piezoelectric actuators with 1000 Volts is approximately 90% of the expected value. The properties of the damper are insensitive to its ambient temperature and remain almost the same after being tested for more than 12,000 cycles.

MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법 (Optimal Design of MR Damper : Analytical Method and Finite Element Method)

  • 하성훈;성민상;구오흥;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.581-586
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff’s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

  • PDF

MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법 (Optimal Design of MR Damper : Analytical Method and Finite Element Method)

  • 하성훈;성민상;구오흥;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1110-1118
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff' s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.