• Title/Summary/Keyword: Damper Clutch

Search Result 42, Processing Time 0.028 seconds

Vibration Analysis of Damper System in Torque Converter (토크 컨버터의 댐퍼 진동 특성)

  • Park, Tae-Jun;Kim, Myung-Sik;Jang, Jae-Duk;Joo, In-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.305-310
    • /
    • 2007
  • This paper presents a damper system design in torque converter to minimize the vibration in powertrain of automatic transmission vehicle. The lock-up clutch in torque converter makes engine and transmission connected directly. When the lock-up clutch is engaged the torque fluctuation of engine is attenuated by the damper system. This function decides the vehicle power-train dynamic characteristics. At first, the dynamic hysteresis effect with any self and surface to surface contact problems of the damper springs in the damper system for torque converter is analyzed by using FEM. It is shown that these simulation results have a good design reference to energy dissipation operating by damper system in torque converter. And, to calculate dynamic characteristics, the vehicle model is structured by using $AMESim^{(R)}$?? that is a common use program. The vehicle model shows the frequency response of vehicle by changing the stiffness of damper spring, and these results lead the most suitable stiffness of spring. Also, new damper system is analyzed resonance frequency variation and is compared with prior damper.

  • PDF

Study on the Vibration Analysis of Damper Clutch Spring (댐퍼 클러치 스프링의 진동 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.22-30
    • /
    • 2011
  • This study analyzes harmonic vibration with natural frequency according to the configuration of damper clutch. In the case of double spring, equivalent stress at same direction of the revolution at inner and outer coil spring is over 30% as compared with at its opposite direction. Natural frequency or harmonic response with maximum deformation in case of the less coil pitch is below 3Hz as compared with in case of the more coil pitch. As the coil pitch of damper spring as the case 2 or 4 becomes smaller, its mass and deformation can be large. In these cases, spring constant and natural frequency become smaller. In the case 5 or 6 of double spring at natural vibration or harmonic response, the frequency becomes over 300Hz. As the result of this study is applied by the design of damper spring, the damage at its connected part is prevented and the durability can be predicted.

A Study on the Vibration of Hydraulic Clutch Control System (Hydraulic Clutch Control System의 진동특성에 관한연구)

  • So, Yoon-Sub;Hur, Man-Dae;Kim, Jae-Young;Kang, Ji-Woo;Lee, Hong-Bum;Lee, Jae-Yeol;Lee, Jong-Hyung;Ro, Seung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • This paper was originated to set up a test equipment and to obtain the proper installation condition of the plastic damper for the hydraulic clutch control system. Performance tests with different specifications have been applied to the damper to investigate the workability and the vibration characteristics of each case, and the result was utilized into the system simulation for the optimal condition for the damper. The procedure has been developed to set up a damper test system to analyze the dynamic properties and the operation of the system, and further to setup a simulation program for the realistic situations. The result can also be applied to the dampers and the clutch systems to be developed in the future for the property tests and the optimization of the installation conditions.

  • PDF

Study on a Full-Size Tester for Manual Transmision Clutches (수동변속기용 클러치의 관성시험장치에 관한 연구)

  • 이병수;신현명;허만대
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.101-109
    • /
    • 2004
  • Three models with various degree-of-freedom for a manual transmission clutch full-size tester have been developed and the models' reliability and accuracy have been verified using the measured data. A simulation study has also been conducted to understand dynamic behavior of the tester. The model for this simulation study includes clutch disk friction and damper dynamics. The developed model is very accurate in terms of maximum torque exerted on the clutch, slip duration and the vibration response except a slight difference compared to the measured data. In a history graph of the clutch torque, the maximum torque response from simulation is flat but the measured is sunken with a noticeable curvature. This phenomenon is found to be irrelevant to the dynamics of the full-size tester but is originated from the characteristics of the clutch itself. Thus, the full-size tester has been proven to be a reliable tester for clutch's power and torque transmission capability. To obtain a better understanding of clutch's characteristics and relationship between full-size tester and other testing methodologies, future research directions have been suggested.

A Study on Clutch Torsional Characteristics for the Torsional Vibration Reduction at Driving (주행시 비틀림진동 저감을 위한 클러치 비틀림특성 연구)

  • 정태진;홍동표;태신호;윤영진;김상수
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.75-83
    • /
    • 1995
  • The fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the fluctuation of the torque of recent light weighted and high powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. This paper presents an experimental and theoretical research on the clutch-disc torsional characteristics for the reduction of the torsional vibration at driving. The effects of clutch-damper on diminishing the torsional vibration were investigated experimentally. A dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics and the clutch-disc torsional characteristics for reducing the torsional vibration has been suggested. The results are as follows: (1) By exceuting simulations using nonlinear model of four degrees of freedom, a design technique to determine the clutch-disc torsional characteristics for reducing the torsional vibration at driving was developed. (2) The influence of barious torsional characteristics of the clutch has been studied in examining design parameters, which indicates that the domain to minimize the torsional vibration at driving depends on the characteristics of the clutch-damper, i. e., spring constant and hysteresis.

  • PDF

An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline (승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.105-111
    • /
    • 2008
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

  • PDF

An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline (승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

Vibration Characteristics and Topology Optimization of a Double Damper Lock-Up Clutch in a Torque Converter System (토크컨버터 장착 이중댐퍼 체결클러치의 진동특성해석 및 위상최적화)

  • Kim, Kwang-Joong;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1129-1136
    • /
    • 2010
  • Damper springs in a drive-line absorb the impulsive torque generated when a lock-up clutch is connected directly, instead of via a fluid coupling. Design optimization and finite element analysis were performed to improve the shock- and vibration-absorption capacity of the lock-up clutch. For this purpose, a multi-body dynamics model was developed by including the main parts of a vehicle, such as an engine with a clutch, a transmission, drive shafts and wheels, and a whole mass of a vehicle. The spring constants were selected so that resonance of a system could be avoided. Damper springs were optimized on the basis of the spring constants, impulsive torques, compressed angles, spring counts, fatigue constraints, etc. Topology optimization was performed for three plates with the damper springs. The compliance was set up as an objective function, and volume fraction was fixed below 0.3. A new shape for the plates was proposed on the basis of the topology result.

A Development of the Simulation Program for Launching Performance of a Passenger Car equipped Continuously Variable Transmission (무단변속기 장착차량의 발진성능 해석을 위한 시뮬레이션 프로그램의 개발)

  • 김정윤;이장무;여인욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.157-166
    • /
    • 1999
  • This paper describes the launching characteristics of a passenger car using a Push-Belt type Continuously Variable Transmission(CVT) which equipped a wet type multi-plate clutch asa starting device and a solid flywheel with a torsional damper for a torsional coupling device. To reduce the torsional vibration of the drive-line , some torsional coupling devices were used for the passenger car equipped CVT having the clutch as a starting device especially . In this study, we developed the computer simulation program to investigate the launching characteristics of a passenger car equipped CVT using the mathematical models of this system. For the mathematical models of the vehicle, the CVT, the we type multi-plate clutch and the torsional damper, we obtained the specification and the necessary data through the reverse engineering of those. For the verification of our analysis, we performed the test of prototype car with different throttle positions at road and dynamometer. The launching characteristics of a passenger car considered here an acceleration performance and an ascending performance.

  • PDF

An Experimental Study on Reduction of Gear Rattle Noise for a Mini-bus with Diesel Engine (디젤엔진을 탑재한 소형버스의 기어 래틀 소음 저감에 관한 실험적 연구)

  • Jung, Jong-An;Cho, Chan-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.13-21
    • /
    • 1995
  • On mini-bus with diesel engine, at idle rpm for taking measurement to reduce gear rattle noise, was tested by the three clutch disc samples by turns, then measured the fluctuation of revolution of engine & transmission and parallel vibration of differential gear & transmission. By analyzing the measured data, the gear rattle noise, the matching design and tuning technic of transmission are comprehended and established. Conclusions of this test are as follows ; (1) Fluctuation of revolution on transmission is greatly affected by torsion of clutch disc according to fluctuation of engine revolution transmit to transmission through clutch system. Especially, gear rattle noise can be reduced by minimaizing the fluctuation of the revolution of transmission using pre-damper type clutch disc. (2) The reason of gear rattle noise is higher in summer than winter and driving longer period than initial driving is due to affection by drag torque changing. So, it is necessary for manufacturer to choose proper oil to transmission. (3) It can be occurred jumping and crash noise by applying the pre-damper type clutch disc for reducing the gear rattle noise. So, it is necessary to do test with actual vehicle according to test procedure.

  • PDF