• Title/Summary/Keyword: Damped

Search Result 550, Processing Time 0.027 seconds

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexiblity of Supporting Structures and an Actuator in a HDD (지지구조와 액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Chang-Suk;Jang, Gun-Hee;Lee, Ho-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.330-336
    • /
    • 2005
  • This paper presents a method to analyze the vibration of a flexible spinning disk-spindle system with FDBs, flexible base structure and an actuator in a HDD by using the FEM. Finite element equations of each component of a HDD spindle system from the spinning flexible disk to the flexible base plate are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by using the restarted Arnoldi iteration method. The validity of the proposed method is verified by comparing the simulated natural frequencies, mode shapes with the experimental results.

  • PDF

Design of piezoelectric Shunt Structure using Admittance Analysis with Application to O.D.D. Main Base (어드미턴스를 이용한 압전 션트 구조물의 설계방법과 O.D.D. 메인 베이스로의 응용)

  • Park, Jong-Sung;Lim, Soo-Cheol;Choi, Seung-Bok;Kim, Jae-Hwan;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.403-406
    • /
    • 2004
  • In this paper, the design of damped structures associated with the piezoelectric shunt circuits is undertaken and it is applied to optical disk drive (O.D.D) main base in order to reduce unwanted vibration. In order to design effective piezoelectric structure, the admittance of the structure is introduced as the performance index of the piezoelectric shunt system. And the admittance offset of the shunt performance is theoretically investigated. It is also presented that the admittance can be calculated by commercial finite elements program. To verify the admittance calculated by F.E.M, admittance measurement is performed by impedance analyzer. In this verifying process, the validity of the finite element admittance analysis is found. As a practical approach, to reduce the vibration of the O.D.D. main base, piezoelectric shunt system is designed using the proposed admittance analysis and shunt effect is evaluated at all prescribed frequencies.

  • PDF

FEASIBILITY STUDY OF SOUND POWER BASED ACTIVE NOISE CONTROL STRATEGIES FOR GLOBAL NOISE REDUCTION

  • Kang, Seong-Woo;Kim, Yang-Hann
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.785-790
    • /
    • 1994
  • The active noise control which regards the acoustic power as a target function to be minimized, is analyzed to test its feasibility of which simplifies the measurement system compared with the global acoustic energy based active noise control system. In fact, it is found that the acoustic power based active noise control strategy is equally likely as good as the global acoustic energy based active noise control method if the acoustic field of interest is diffusive or very low model density one. In the intermediate model density field, we also demonstrate that the power based control gives the similar results as the energy based control in terms of global sound energy reduction for the lightly damped enclosure which might be most important system in practical application. From all the theoretical and power based control strategy is dependent on the characteristics of the acoustic field to be controlled; i.e., the model density distribution, the degree of reverberation, and on the strength of modal interaction of the control source with the primary source; i.e., the location of control source.

  • PDF

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

Dependence of System Dynamics on Characteristics of Pogo Suppression Device (포고억제장치에 의한 시스템 동특성 변화)

  • Lee Jun Kyoung;Koh Kwang Uoong;Lee Han Ju;Lee Sang Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.121-125
    • /
    • 2004
  • The effectiveness of the pogo suppression device (PSD) installed at the piping system simulating the fuel supply lines of the rocket engines was investigated. The system response defined as the ratio of the flow rate to the pressure in the main tube was obtained for various PSD gas volumes $(0,\;0.5,\;1,\;2\times10^{-6}\;m^3)$. Existence of a gas volume in the PSD reduced the system resonance frequency. With a larger gas volume, the resonance frequency became lower, but only slightly, though the fluctuations of the main tube pressure and the flow rate damped down considerably

  • PDF

A Study on Damping Characteristic under the Thermo-acoustic Condition using the Rijke Tube (Rijke Tube를 이용한 열환경에서의 음향공 감쇠 특성연구)

  • Kim, Geun-Cheol;Jeon, Jun-Soo;Kim, Joong-Il;Ko, Young-Sung;Kim, Hong-Jip
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.47-50
    • /
    • 2011
  • A Rijke tube which has an electric heater and a flow controller was designed and thermo-acoustic instability was induced by the Rijke tube. The thermo-acoustic instability was damped by a resonator and the damping characteristics were investigated and compared to room temperature acoustic test. Results show that decay time of the thermo-acoustic condition was increased by about 40% compared to that of room temperature acoustic test.

  • PDF

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Dynamic Analysis of KTX Vibration at the Tail of the Train (KTX 차량 후미진동 해석(I))

  • 강부병;김영우;왕영용
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was "appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

Dynamic Responses in Ultra-Soft Magnetic Thin Films (초 연자성 박막에서의 동적 자화 거동)

  • 정인섭
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • The magnetization dynamics was investigated by solving possible origins of overdamped susceptibility observed in ultra-soft magnetic amorphous thin films. The experimental high frequency spectrum and computational spectrum calculated from Gilbert's equation of motion were compared in order to find proper damping factor $\alpha{\approx}20$ and demagnetizing coefficients $D_{x}{\approx}D_{y}{\approx}D_{z}{\approx}0$ for ultra-soft magnetic films. A magnetization vortex mode was, then, proposed to explain the origin of the reversible susceptibility and other anomalies of the ultra-soft magnetic heterogeneous thin films. In this mode it is suggested that there occur, within the nanoscale structural features of the ultra-soft films, incoherent rotational spin motions that are highly damped by the energy transfer from short wavelength spin wave modes and local defect structure mode interactions.

  • PDF

Active control of optimization process in lens design by using Lagrange's undetermined multiplier method (광학설계의 최적화에서 Lagrange 부정승수법을 이용한 능동적 제어)

  • 조용주;이종웅
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.109-114
    • /
    • 2001
  • Optical system has some optical and mechanical constraints. The constraints should be preserved in optimization of optical system. For the purpose, the constraints are combined with the merit function by using Lagrange's undetermined multipliers. We propose an active optimization control by using the fact that the errors of constraints are corrected with higher priority than the other errors of the merit function. In this control, the errors which have large contribution to the merit function are converted into constraints. At that time, if the errors are corrected at once, the optimization will be unstable because of their non-linearity. Hence we introduce a target rate which represents a fraction of error to be corrected, and the errors are corrected progressively. An optimization program was developed on the bases of the proposed active control, and applied to design a photographic lens system. By using the active control, we could get better results compared with conventional damped least squares method. ethod.

  • PDF