• Title/Summary/Keyword: Damaged pipelines

Search Result 24, Processing Time 0.025 seconds

Analysis of Propagation of Negative Pressure Wave Due to Leak Through Damaged Hole in High Pressure Piping System (고압 배관망에서 배관 손상에 의한 누출 및 관내 저압확장파의 전파 특성 해석)

  • Kim, Wang-Yeun;Ha, Jong-Man;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods of pipeline network which have recently been suggested. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using Fluent 6.3, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave, and the results of 2-dimensional analysis verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. Characteristics of leakage and pressure in a pipe with a hole have been analyzed for the various pipe and hole sizes.

Analysis of Frozen Reduction Effect and Economic Evaluation of Recycled PET-Soil (재활용 PET 재료를 이용한 골재의 동상저감 효과 분석 및 경제성 평가)

  • Shin, Eun Chul;Shin, Hui Su;Kim, Gi Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.153-159
    • /
    • 2014
  • During the winter and spring seasons in Korea, structures such as buried water supply pipelines, roads, railways are frequently damaged due to frost heaving and thawing. Until now, the method of substituting the frost susceptible soil with the gravel or rubbles those are non-frost susceptible materials have been employed in Korea to prevent frost heaving. A series of laboratory soil tests and indoor frozen soil engineering experiments, as well as laboratory frost heaving tests were conducted for seeking the means of utilizing recycled PET bottles as substitute material.

Reduced wavelet component energy-based approach for damage detection of jacket type offshore platform

  • Shahverdi, Sajad;Lotfollahi-Yaghin, Mohammad Ali;Asgarian, Behrouz
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.589-604
    • /
    • 2013
  • Identification of damage has become an evolving area of research over the last few decades with increasing the need of online health monitoring of the large structures. The visual damage detection can be impractical, expensive and ineffective in case of large structures, e.g., offshore platforms, offshore pipelines, multi-storied buildings and bridges. Damage in a system causes a change in the dynamic properties of the system. The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals. Most of vibration-based damage detection methods require modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such good sensitive indication of structural damage. Identification of damaged jacket type offshore platform members, based on wavelet packet transform is presented in this paper. The jacket platform is excited by simple wave load. Response of actual jacket needs to be measured. Dynamic signals are measured by finite element analysis result. It is assumed that this is actual response of the platform measured in the field. The dynamic signals first decomposed into wavelet packet components. Then eliminating some of the component signals (eliminate approximation component of wavelet packet decomposition), component energies of remained signal (detail components) are calculated and used for damage assessment. This method is called Detail Signal Energy Rate Index (DSERI). The results show that reduced wavelet packet component energies are good candidate indices which are sensitive to structural damage. These component energies can be used for damage assessment including identifying damage occurrence and are applicable for finding damages' location.

City Gas Pipeline Pressure Prediction Model (도시가스 배관압력 예측모델)

  • Chung, Won Hee;Park, Giljoo;Gu, Yeong Hyeon;Kim, Sunghyun;Yoo, Seong Joon;Jo, Young-do
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.33-47
    • /
    • 2018
  • City gas pipelines are buried underground. Because of this, pipeline is hard to manage, and can be easily damaged. This research proposes a real time prediction system that helps experts can make decision about pressure anomalies. The gas pipline pressure data of Jungbu City Gas Company, which is one of the domestic city gas suppliers, time variables and environment variables are analysed. In this research, regression models that predicts pipeline pressure in minutes are proposed. Random forest, support vector regression (SVR), long-short term memory (LSTM) algorithms are used to build pressure prediction models. A comparison of pressure prediction models' preformances shows that the LSTM model was the best. LSTM model for Asan-si have root mean square error (RMSE) 0.011, mean absolute percentage error (MAPE) 0.494. LSTM model for Cheonan-si have RMSE 0.015, MAPE 0.668.