In this study, engineering grade and high intensity reflective sheets were prepared with glass beads and their reflection performance and physical properties were investigated. The reflective sheets prepared by using glass beads are divided into enclosed or encapsulated lens type, depending on whether the glass beads are open in air or not. Because of an extra layer on the glass bead surface, the enclosed lens type reflective sheets show very little change in the properties by bad weather conditions, compared to encapsulated lens type reflective sheets. Optimization of the amount of glass beads on the surface was carried out, which determines the retroreflective properties. Enclosed and encapsulated lens type reflective sheets with various colors were prepared and their coefficients of retroreflection were determined. The encapsulated type reflective sheet with white color shows a coefficient of retroreflection of $210.4cd/1x{\cdot}m^2$, which is higher than the enclosed type ($74cd/1x{\cdot}m^2$). Effect of washing on the reflective property and adhesive power of the reflective sheets was investigated, and it is found that the number of glass beads decreased with washing and the aluminum layer deposited was damaged extensively in the encapsulated lens type reflective sheets.
Cheongpung Buwongun Kim Wu-myeong's Funeral Bier, an important folklore cultural property No.120, possessed by Chuncheon National Museum was donated in 2002 (by Kim Seonggu). It consists of a bier, yoyeo(腰輿), myeongjeongdae(銘旌臺), and manjangdae(輓章臺). It has a high value as the oldest royal bier. The bier which had a resting time in the storage for special exhibition of "The great cultural treasure of Gangwon province" was inspected in September 2012 and colored pigment layer of the wooden part had the risk of peeling off and surface damage of the textile was serious. Therefore, conservation treatment was conducted. In addition, knots and susiks(垂飾) were severely damaged and their exhibition was impossible. Therefore, a reproduction to replace them through a close investigation was made. All parts of the funeral bier were in separation except for the basic furniture. Conservation was made by dividing the parts into wooden parts and textile parts. Yoyeo was reinforced after disassembling bujae from it and then was reassembled. Paraloid B-72 2 wt% (in ethyle acetate), acrylic resin, was applied to the wooden part of the bier in order to reinforce the colored pigment layer with the addition of sodium alginate 2 wt%(in stilled water) and glue 4 wt%(in stilled water). The pollutants on the surface of the textile part were removed (vacuuming) and its creases were smoothed out (steaming). Fat-soluble pollutants were removed using an nonionic surfactant(Saponin, concentration at 0.25 to 0.5 g/𝑙, in de-ionized water). After the disassembly of the yoyeo from the broken wooden, it was bonded with glue (3 wt% for the first gluing, 35 wt% for gluing), and pine wood was used to restore missing parts. In the process of connecting Wongak(雲角), the original metal hinge and nails were reused to complete the assembly.
Detailed mapping along the Keumwang fault reveals a complex history of multiple brittle reactivations following late Jurassic and early Cretaceous ductile shearing. The fault core consists of a 10~50 m thick fault gouge layer bounded by a 30~100 m thick damaged zone. The Pre-cambrian gneiss and Jurassic granite underwent at least six distinct stages of fault movements based on deformation environment, time and mechanism. Each stage characterized by fault kinematics and dynamics at different deformation environment. Stage 1 generated mylonite series along the Keumwang shear zone by sinistral ductile shearing during late Jurassic and early Cretaceous. Stage 2 was a mostly brittle event generating cataclasite series superimposed on the mylonite series of the Keumwang shear zone. The roundness of pophyroclastes and the amount of matrix increase from host rocks to ultracataclasite indicating stronger cataclastic flow toward the fault core. At stage 3, fault gouge layer superimposed on the cataclasite generated during stage 2 and the sedimentary basins (Umsung and Pungam) formed along the fault by sinistral strike-slip movement. Fragments of older cataclasite suspended in the fault gouge suggest extensive reworking of fault rocks at brittle deformation environments. At stage 4, systematic en-echelon folds, joints and faults were formed in the sedimentary basins by sinistral strike-slip reactivation of the Keumwang fault. Most of the shearing is accommodated by slip along foliations and on discrete shear surfaces, while shear deformation tends to be relatively uniformly distributed within the fault damage zone developed in the mudrocks in the sedimentary basins. Fine-grained andesitic rocks intruded during stage 4. Stage 5 dextral strike-slip activity produced shear planes and bands in the andesitic rocks. ESR(Electron Spin Resonance) dates of fault gouge show temporal clustering within active period and migrating along the strike of the Keumwang fault during the stage 6 at the Quaternary period.
Although the stone pagoda in Mireuk Temple site, Iksan, Cholla Province has been collapsed long time ago, few historical record has clearly explained the reason why the pagoda was collapsed and when. The west side of the pagoda have been destroyed from top to the sixth floor and the broken or damaged stone materials have been piled up in disorder. the lower part in the west was reinforced and enclosed by a stone embankment levelled to the height of the first storey of the pagoda. With no record informing the historical fact when it was made and by whom, it is only presumed that the embankment may have been built long time ago in order to prevent remains from further destruction. In the second chapter of the study, it has been tried to restore a reasonable historical background of the pagoda based on records or comments found in literatures such as traditional poetry and essays in chronological order. The collapsed slope in the west side, just above the embankment surrounding the lower part of the pagoda, was concreted in 1915 during the Japanese colonial period. Then in 1998, the Jeollabukdo has examined the structural safety of the pagoda. The Cultural Properties Committee has decided have the concrete layer removed and moreover to take apart the whole pagoda. It is also included that the disassembled stone materials should be given proper conservation treatments before being put into the place where they were in the reassembling process. The front view of the collapsed phase of the pagoda was revealed when the concrete-covered layer was removed. A hypothesis was built that there may be as many different appearances of collapsed pagoda depending on natural causes such as earthquake, sunken foundation, flood and typhoon. In chapter three, characteristic features were classified by examining various images of pagodas destroyed by different natural reasons mentioned in historical records. The chapter four dealt with comparison and analysis on the conditions shown in the stone pagoda in Mireuk Temple site and other examples studied in advance. The result of the study revealed that though having been made higher than the ground surface, the podium or the base of the pagoda actually has been eroded by rain and water. The erosion is supposed not only to have been proceeded for a long time without break but also to have caused the first storey body stone in the west inclined to outward. It has come to a conclusion that the pagoda may have been lead to collapse when the first storey body stone, supporting the whole weight from the upper storeys, became out of upright position and lost its balance. However, no such distinctive features of structural changes shown in pagodas collapsed by natural causes like earthquake, typhoon or sunken basement, have been found in the stone pagoda in Mireuk Temple site.
The purpose of this study was to classify the types of degraded areas of Mt. Jirisan section in Baekdudaegan and survey the actual condition of each damage type to use it as basic data for the direction of the restoration of damaged areas according to damage type based on the vegetation information of reference ecosystem. The analysis of the Mt. Jirisan section's actual degraded conditions showed that the total number of patches of degraded areas was 57, and the number of patches and size of degraded areas was higher at the low average altitude and gentle slope. Grasslands (deserted lands) and cultivated areas accounted for a high portion of the damage types, indicating that agricultural land use was a major damage factor. The survey on the conditions of 14 degraded areas showed that the types of damage were classified into the grassland, cultivated area, restoration area, logged-off land, and bare ground. The analysis of the degree of disturbance (the ratio of annual and biennial herb, urbanized index, and disturbance index) by each type showed that the simple single-layer vegetation structure mostly composed of the herbaceous and the degree of disturbance were high in the grassland and cultivated land. The double-layer vegetation structure appeared in the restoration area where the pine seedlings were planted, and the inflow of naturalized plants was especially high compared to other degraded areas due to disturbances caused by the restoration project and the nearby hiking trails. Although the inflow of naturalized plants was low because of high altitude in bare ground, the proportion of annual and biennial herb was high, indicating that all surveyed degraded areas were in early succession stages. The stand ordination by type of damage showed the restoration area on the I-axis, cultivated area, grassland, logged-off land, and bare ground in that order, indicating the arrangement by the damage type. Moreover, the stand ordination of the degraded areas and reference ecosystem based on floristic variation showed a clear difference in species composition. This study diagnosed the status of each damage type based on the reference ecosystem information according to the ecological restoration procedure and confirmed the difference in species composition between the diagnosis result and the reference ecosystem. These findings can be useful basic data for establishing the restoration goal and direction in the future.
Dolmens bearing the burial layout and stone coffin tombs of the late Bronze Age were excavated from Samdeok-ri, Goseong, Gyeonsangnsamdo, and grave items such as red-burnished pottery, arrowheads, and stone swords were also discovered. In the case of the red-burnished pottery that was found, it retains a pigment layer with a thickness of about 50 to 160㎛, but with most of the other items, exfoliation and peeling-off of pigment layers can be observed on the surface. The raw materials of the red-burnished pottery contained moderately sorted minerals such as quartz, feldspar, and hornblende, and partly opaque iron oxide minerals were also identified. In particular, the raw materials of the red-burnished pottery from stone coffin tomb #6 were different from those of the other pottery, containing large amounts of hornblende and feldspar. The pottery's red pigment was identified as hematite and showed similar mineral content of raw materials such as fine grained quartz, feldspar, and hornblende. The firing temperature is estimated to have been approximately 900℃, based on their mineral phase. The possibility exists that the raw materials had been collected from the Samdeok-ri area, because diorite and granite diorite with dominant feldspar and hornblende have been identified within 3km of that area. During the pottery manufacturing process, it is estimated that the pigment was painted on the entire surface of the red-burnished pottery after it had been molded and then finished using the abrasion technique. In other words, the red-burnished pottery was made by the process of vessel forming - semi drying - coloring - polishing. The surface and cross-section of the pottery appears differently depending on the concentration of the pigment and the coloring method used after vessels were formed. Most of the excavated pottery features a distinct boundary between pigment and body fabric. However, in the case of pottery in which fine-grained pigments penetrate the body fabric so that layers cannot be distinguished, there is the possibility that the fine-grained pigment layer was applied at a low concentration or immediately after vessel forming. Many cracks can be seen on the surface pigments in thickly painted pottery items, and in many cases, only a small portion of the pigment layers remain due to surface exfoliation and abrasion in the burial environment. It is reported that pottery items may be more easily damaged by abrasion if coated with pigment and polished, so it is believed that the red-burnished pottery of the Samdeok-ri site suffered from weathering in the burial environment. This damage was more extensive in the potsherds that were scattered outside the tomb.
Journal of the Korean Institute of Traditional Landscape Architecture
/
v.32
no.1
/
pp.93-106
/
2014
In this study, Analyze environment of location, investigation into vegetation resources, survey management status and establish to classify the management area for Natural monument No.374 Pyengdae-ri Torreya nucifera forest. The results were as follows: First, Torreya nucifera forest is concerned about influence of development caused by utilization of land changes to agricultural region. Thus, establish to preservation management plan for preservation of prototypical and should be excluded development activity to cause the change of terrain that Gotjawal in the Torreya nucifera forest is factor of base for generating species diversity. Secondly, Torreya nucifera forest summarized as 402 taxa composed 91 familly 263 genus, 353 species, 41 varieties and 8 forms. The distribution of plants for the first grade & second grade appear of endangered plant to Ministry of Environment specify. But, critically endangered in forest by changes in habitat, diseases and illegal overcatching. Therefore, when establishing forest management plan should be considered for put priority on protection. Thirdly, Torreya nucifera representing the upper layer of the vegetation structure. But, old tree oriented management and conservation strategy result in poor age structure. Furthermore, desiccation of forest on artificial management and decline in Torreya nucifera habitat on ecological succession can indicate a problem in forest. Therefore, establish plan such as regulation of population density and sapling tree proliferation for sustainable characteristics of the Torreya nucifera forest. Fourth, Appear to damaged of trails caused by use. Especially, Scoria way occurs a lot of damaged and higher than the share ratio of each section. Therefore, share ratio reduction Plan should be considered through the additional development of tourism routes rather than the replacement of Scoria. Fifth, Representing high preference of the Torreya nucifera forest tourist factor confirmed the plant elements. It is sensitive to usage pressure. And requires continuous monitoring by characteristic of Non-permanent. In addition, need an additional plan such as additional development of tourism elements and active utilizing an element of high preference. Sixth, Strength of protected should be differently accordance with importance. First grade area have to maintenance of plant population and natural habitats. Set the direction of the management. Second grade areas focus on annual regeneration of the forest. Third grade area should be utilized demonstration forest or set to the area for proliferate sapling. Fourth grade areas require the introduced of partial rest system that disturbance are often found in proper vegetation. Fifth grade area appropriate to the service area for promoting tourism by utilizing natural resources in Torreya nucifera forest. Furthermore, installation of a buffer zone in relatively low ratings area and periodic monitoring to the improvement of edge effect that adjacent areas of different class.
Laboratory and greenhouse studies were conducted to determine differential sensitivities on absorption of $^{14}$ C-oxyfluorfen and the anatomical responses in wheat and barley to protoporphyrinogen oxidase-inhibiting herbicides [oxyfluorfen (2-chloro-1- (3-ethoxy -nitrophen-oxy)-4-(trifluoromethyl) benzene, acifluorfen(5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-nitro-benzoic acid), bifenox(methyl-5-(2, 4-dichlorophenoxy)-2-nitrobenzoate) and oxadiazon(5-tert-butyl-3-(2, 4-dichloro-5-isopropoxyphenyl)-1, 3, 4-oxadiazol-2-one)]. I$_{50}$ value of the tolerant wheat cultivars to oxyfluorfen was about 10$^{-4}$ , whereas that of the susceptible barley cultivars was about 10$^{-6}$ M, showing significant difference between the two groups. When foliage were applied with acifluorfen, bifenox or oxadiazon, the oxyfluorfen-tolerant wheat showed less decreased in shoot fresh weight and chlorophyll content than the susceptible barley. Also, when soil-applied with these herbicides test plants showed similar tendency in foliar application. Electrolyte leakage from the tissue treated with these compounds was the more influenced in the barley than the wheat. Malondialdehyde(MDA) production as index of lipid peroxidation was greater in the barley than the wheat by treatment of these compounds. Therefore, the differential sensitivities of wheat and barley to protoporphyrinogen oxidaseinhibiting herbicides was showed by our greenhouse and in vitro experiment. The absorption rates of $^{14}$ C-oxyfluorfen were higher in the barley than the wheat. And this tendency was showed appararitly difference by increase of treatment durations. After the oxfluorfen and oxadiazon treatment, the tolerant wheat did not show the structural damage in leaf surface, but the susceptible barley was damaged in the leaf waxy layer. However, the acifluorfen and bifenox treatment showed no difference between wheat and barley. The anatomical changes by these compounds treatment were not observed in the tolerant wheat but epidermal cell and mesophyll cell were highly broken in the susceptible barley.
In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.
A 2.5 ton scale of solar energy concentration blast-grain circulation dryer (SECD) was developed in order to shorten the drying time without damaged paddy. Comparative experiments were carried out on performance, drying efficiency, consistency in moisture content, milling recovery, grade of milled rice, and energy requirement and cost against all that of in-bin drying and storage (IBDS) method. The experiments were performed using mixture of several rice varieties of Tongil type(Japonica-Indica breeding type) under the autumn weather in Korea. The circulating air temperature inside SECD was $4{\sim}5^{\circ}C$ higher than that of IBDS. The moisture content of the paddy during the drying period in SECD was uniform while substantially varied in upper, middle or bottom layer in IBDS. By SECD, 24% initial moisture content of paddy was reduced to 15% after only 3 days of drying as compared to 14 days at IBDS. The percentage of cracked kernels in upper, middle and bottom layers in IBDS was 6, 6 and 12%, respectively, whereas 7% in all layers in SECD. Both types of dryers did not significantly affect the milling recovery of dried paddy and grade of milled rice. Energy requirement of SECD(28.8Kw/2.5ton) for paddy drying was much less than that of IBDS(108Kw/2.5ton).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.