• Title/Summary/Keyword: Damaged cause

Search Result 427, Processing Time 0.031 seconds

Mitophagy: Therapeutic Potentials for Liver Disease and Beyond

  • Lee, Sooyeon;Kim, Jae-Sung
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • Mitochondrial integrity is critical for maintaining proper cellular functions. A key aspect of regulating mitochondrial homeostasis is removing damaged mitochondria through autophagy, a process called mitophagy. Autophagy dysfunction in various disease states can inactivate mitophagy and cause cell death, and defects in mitophagy are becoming increasingly recognized in a wide range of diseases from liver injuries to neurodegenerative diseases. Here we highlight our current knowledge on the mechanisms of mitophagy, and discuss how alterations in mitophagy contribute to disease pathogenesis. We also discuss mitochondrial dynamics and potential interactions between mitochondrial fusion, fission and mitophagy.

Damage Mechanism of Asphalt Concrete under Low Temperatures

  • Kim, Kwang-Woo;Yeon, Kyu-Seok;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.200-204
    • /
    • 1994
  • Low temperature associated damage mechanism is not well known for asphalt concrete. Many studies have related the thermal cracking of pavement in the roadway in cold region with overall shrinkage of the pavement surface under assumption of homogeneous material. This study, however, was intiated based on the assumption that thermal incompatibility of materials (heterogeneous) in asphalt concrete mixture would be the primary cause of the damages. Acoustic emission technique and microscopic obsevation were employed to evaluate damage mechanism of asphalt concrete due to low temperature. The first method showed the sufficient evidence that asphalt concrete could be damaged by lowered temperature only. The second method showed that the damage by temperature resulted in micro-cracks at the interface between asphalt matrix and aggregate particle. It was concluded that these damage mechanisms were the primary cause of major thermal cracking of asphalt pavement in cold region.

  • PDF

The Experimental Verification and Fault Cause Analysis of Breakdown on the 6.6kV class Cable Joint (6.6kV급 케이블 중간접속부의 절연파괴 사고원인 분석과 실험 검증)

  • Kim, Young-Seok;Shong, Kil-Mok;Jung, Jin-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1385_1386
    • /
    • 2009
  • In this paper, we examined the faulted cable joint through the external form analysis, material analysis, experimental verification and it's cause diagnosis system. It was not observed the voild, sharp material from the external form analysis and material variation. From the experimental verification, the thickness decrease of an insulator decreased ac breakdown strength suddenly and the breakdown traces of the insulator that was damaged by knife displayed elliptic shape. Thus, the faulted cable is assumed to accident that become dielectric breakdown by the deterioration of insulation performance that can happen when work.

  • PDF

Damage Cause Analysis for GCB of 154kv Power Plant (154kV 전력계통 가스차단기(GCB) 소손원인 조사분석)

  • Lee, Eun-Chun;Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.425-427
    • /
    • 2000
  • The purpose of this study is to find the cause of the damage to the GCB(Gas Circuit Breaker), since the GCB of the 154kV power plant at the Hap-Cheon Dam has already been damaged twice. We researched the characteristics of this class of circuit breaker and the possible causes for this type of damage to the GCB using the FTA(Fault Tree Analysis) Method. We studied the optimal maintenance method of the GCB, the stability analysis and power serge protection of Hap-Cheon Dam, and the power serge and fault list of the power transmission line to help prevent a reoccurrence of the problem.

  • PDF

Analysis of the Truck Fire Caused by Return Spring Defect of a Braking System during Expressway Driving (고속도로 주행 중 제동장치 리턴스프링 결함으로 발생한 트럭화재의 분석)

  • Kim, Younhoi;Lee, Euipyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2014
  • Most truck fires breaking out on the expressway are directly damaged by fire destruction of truck and freight and many of them cause indirect damage such as serious traffic holdups. This study analyzed the fire causes and their liability of the 25-ton truck fire breaking out during expressway driving. This truck fire was caused by manufacturing defect of return spring of a braking system. The fire liability rested with a maker(manufacturer) rather than a truck owner or a driver and the maker also bore fire liability based on the Product Liability Law.

Transient Voltage Analysis of Low-Voltage Source Circuit inn Thermal Power Plant due to Grounding Potential Rise by Lightening (낙뢰침입에 의한 대지전위상승이 발전소 저압전원회로에 미치는 과전압 해석)

  • Yang, Byeong-Mo;Jeong, Jae-Kee;Min, Byeong-Wook;Lee, Jong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1644-1646
    • /
    • 1998
  • High-Smokestacks have been the symbol of the thermal power plant. Those cause the thermal power plant to be damaged by lightening for reaching several hundreds meter. In this paper, we investigated the accident of low-voltage source circuit due to grounding potential rise by lightening via high-smokestack in practically driving power plant, described examination into the cause and the impulse analysis. We analysed the transient voltage by EMTP(ElectroMagnetic Transient Program) via modeling the grounding system of power plant. This theoretical results coincided with practical accidental state. Therefore, it was verified that we could apply the grounding system of power plant and substation with the distribution-circuit analysis(EMTP).

  • PDF

Cause Analysis for a Lining Damage in Sea Water System Piping Installed in a Korean Industrial Plant

  • Hwang, K.M.;Park, S.K.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Many Korean industrial plants including nuclear and fossil power plants use seawater as the ultimate heat sink to cool the heat generated by various facilities. Owing to the high corrosivity of seawater, facilities and piping made of metal material in contact with seawater are coated or lined with polymeric materials to avoid direct contact with seawater. However, polymeric materials used as coating and lining have some level of permeability to water and are degraded over time. Korean industrial plants have also experienced a gradual increase in the frequency of damage to pipes in seawater systems due to prolonged operating periods. In the event of a cavitation-like phenomenon, coating or lining inside the piping is likely to be damaged faster than expected. In this paper, the cause of water leakage due to base metal damage caused by the failure of the polyester lining in seawater system piping was assessed and the experience with establishing countermeasures to prevent such damage was described.

A Study on the Failure Characteristics about Metropolitan Pipelines in Korea (국내(國內) 대도시(大都市) 수도관(水道管)의 파손특성(破損特性)에 관한 연구(硏究))

  • Lee, Hyun-Dong;An, Youn-Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.96-111
    • /
    • 1996
  • The failure of water pipelines is progressed by several compound factors and the collection and analysis of data about pipeline failure are inevitable for effective pipeline rehabilitation. Data analysis of pipeline failure was already performed in USA and Europe. Based on such phenomena, failure characteristics about metropolitan pipelines in Korea were analyzed: The conclusions of this study are as followings. 1. The failure cause of pipelines can be classified into natural cause and artificial cause. Artificial cause is 32% of total causes, so artificial failure as several constructions happens frequently in Korea. Although the failure by old pipe is greatest of any other causes m classtfied cause, failure cause is not classified in detail now. 2. The damaged part of pipelines is affected by cities, distribution system inventory, bedding conditions, and so on. In this study, the failure of pipeline body(67%) is greater than the failure of pipeline joint(33%) in natural failure. 3. In regard to pipe materials, failure rate of DCIP(0.8456), PEP(0.7288), and GSP(0.6643) is greater than that of CIP(0.3985) and CWSP(0.2348). 4. Usually, faIlure rate is increased in proportion to diameter of pipeline. In this study, CIP, DCIP, and CWSP have clear trends. But the trends of PEP is reverse, the case of GSP, HP is obscure due to data shortage. 5. There are no direct relationships between burial age and failure rate of pipelines. 6. Annual breaks and winter(Nov.~Feb.) breaks of pipelines are investigated. As a result, WInter breaks to annual breaks of CIP is 51.3%(Seoul), 51.1%(Taegu),38.7%(Pusan). This phenomena have direct correlation with average winter temp. of cities.

  • PDF