• Title/Summary/Keyword: Damaged Building Area

Search Result 57, Processing Time 0.033 seconds

A Study on the Improvement of Repair and Reinforcement Quantity Take-off in Fire-damaged Area Using 3D Laser Scanning (3D Laser Scanning을 활용한 화재 손상 부위의 보수·보강 물량 산출 방식 개선에 관한 연구)

  • Jeong, Hoi-Jae;Ham, Nam-Hyuk;Lee, Byoung-Do;Park, Kwang-Min;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • Recently, there is an increase in fire incidents in building structures. Due to this, the importance of fire-damaged buildings' safety diagnosis and evaluation after fire is growing. However, the existing fire-damaged safety diagnosis and evaluation methods are personnel-oriented, so the diagnostic results are intervened by investigators' subjectivity and unquantified. Thus, improper repair and reinforcement can result in secondary damage accidents and economic losses. In order to overcome these limitations, this study proposes using 3D laser scanning technology. The case analysis of fire-damaged building structures was conducted to verify the effectiveness of accuracy and manpowering by comparing the existing method and the proposed method. The proposed method using 3D laser scanning technology to obtain point cloud data of fire-damaged field. The point cloud data and BIM model is combined to inspect the fire-damaged area and depth. From inspection, quantified repair and reinforcement quantity take-off can be acquired. Also, the proposed method saves half of the manpowering within same time period compared to the existing method. Therefore, it seems that using 3D laser scanning technology in fire-damaged safety diagnosis and evaluation will improve in accuracy and saving time and manpowering.

Full Polarimetric SAR Decomposition Analysis of Landslide-affected Areas in Mocoa, Colombia

  • Jeon, Hyeong-Joo;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.365-374
    • /
    • 2017
  • SAR (Synthetic Aperture Radar) is an effective tool for monitoring areas damaged by disasters. Full PolSAR (Polarimetric SAR) enhances SAR's capabilities by providing specific scattering mechanisms. Thus, full PolSAR data have been widely used to analyze the situation when disasters occur. To interpret full PolSAR data, model-based decomposition methods are frequently used due to its easy physical interpretation of PolSAR data and computational efficiency. However, these methods present problems. One of the key problems is the overestimation of the volume scattering component. To minimize the volume scattering component, the OA (Orientation Angle) compensation method is widely utilized. This paper shows that the effect of the OA compensation was analyzed over landslide affected areas. In this paper, the OA compensation is applied by using the OA estimated from the maximum relative Hellinger distance. We conducted an experiment using two full polarimetric ALOS/PALSAR (Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar)-2 data collected over Mocoa, Colombia which was seriously damaged by the 2017 Mocoa landslide. After OA compensation, the experimental results showed volume scattering power decreased, while the double-bounce and surface scattering power increased. Particularly, significant changes were noted in urban areas. In addition, after OA compensation, the separability of the double-bounce and surface scattering components are improved over the damaged building areas. Furthermore, changes in the OA can discriminate visually between the damaged building areas and undamaged areas. In conclusion, we demonstrated that the effect of OA compensation improved the influence of the double-bounce and surface scattering components, and OA changes can be useful for detecting damaged building areas.

Numerical Study on the Fire Damaged Reinforced Concrete Building Structures Considering Influencing Fire Case and Parameters of Columns (화재피해를 받은 철근콘크리트 건축물의 기둥의 영향인자를 고려한 해석적 연구)

  • Suh, Yeonwoo;Son, Hee Ju
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.101-112
    • /
    • 2022
  • Expanding urbanization practices result in high numbers of buildings being developed in city centers. This high building concentration leads to an increased fire risk, resulting in higher casualty rates and increased economic damages compared to fires in the past. The purpose of this study was to analyze the structural behavior of fire-damaged reinforced concrete buildings using analytical methods and to suggest methods of improving fire resistance in the event of a fire. Damage levels were measured using commercial software to apply the finite element method, ABAQUS, and MIDAS GEN to the dataset. Load-deflection curves were calculated using the effective area and moment of inertia of the fire-damaged columns provided by ABAQUS. The results of this analysis indicate that fire-damaged beams with experience greater deflection from indoor fires than they will from outdoor fires. Fires that occurred on the middle floors were more dangerous than those occurring on higher floors, and eccentrically loaded columns experienced more damage than axially loaded columns. The results indicate that these methods accurately predict structural behaviors of fire damaged concrete columns by considering fire exposure area and eccentric loading.

DCT and DWT based Damaged Weather Radar Image Retrieval (DCT 및 DWT 기반의 손상된 기상레이더 영상 복원 기법)

  • Jang, Bong-Joo;Lim, Sanghun;Kim, Won;Noh, Huiseong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.153-162
    • /
    • 2017
  • Today, weather radar is used as a key tool for modern high-tech weather observations and forecasts, along with a wide variety of ground gauges and weather satellites. In this paper, we propose a frequency transform based weather radar image processing technique to improve the weather radar image damaged by beam blocking and clutter removal in order to minimize the uncertainty of the weather radar observation. In the proposed method, DCT based mean energy correction is performed to improve damage caused by beam shielding, and DWT based morphological image processing and high frequency cancellation are performed to improve damage caused by clutter removal. Experimental results show that the application of the proposed method to the damaged original weather radar image improves the quality of weather radar image adaptively to the weather echo feature around the damaged area. In addition, radar QPE calculated from the improved weather radar image was also qualitatively confirmed to be improved by the damage. In the future, we will develop quantitative evaluation scales through continuous research and develop an improved algorithm of the proposed method through numerical comparison.

Change Detection of Building Demolition Area Using UAV (UAV를 활용한 건물철거 지역 변화탐지)

  • Shin, Dongyoon;Kim, Taeheon;Han, Youkyung;Kim, Seongsam;Park, Jesung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.819-829
    • /
    • 2019
  • In the disaster of collapse, an immediate response is needed to prevent the damage from worsening, and damage area calculation, response and recovery plan should be established. This requires accurate detection of the damage affected area. This study performed the detection of the damaged area by using UAV which can respond quickly and in real-time to detect the collapse accident. The study area was selected as B-05 housing redevelopment area in Jung-gu, Ulsan, where the demolition of houses and apartments in progress as the redevelopment project began. This area resembles a collapsed state of the building, which clear changes before and after the demolition. UAV images were acquired on May 17 and July 9, 2019, respectively. The changing area was considered as the damaged area before and after the collapse of the building, and the changing area was detected using CVA (Change Vector Analysis) the Representative Change Detection Technique, and SLIC (Simple Linear Iterative Clustering) based superpixel algorithm. In order to accurately perform the detection of the damaged area, the uninterested area (vegetation) was firstly removed using ExG (Excess Green), Among the objects that were detected by change, objects that had been falsely detected by area were finally removed by calculating the minimum area. As a result, the accuracy of the detection of damaged areas was 95.39%. In the future, it is expected to be used for various data such as response and recovery measures for collapse accidents and damage calculation.

Strategies for Acceleration of Damaged Area Restoration Project in the Development Restriction Zone

  • Park, Seong Yong;Jung, Sung Ae;Lee, Sang Jo;Chung, Jae Woo
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • The purpose of this study is to derive institutional improvement methods for promoting the Damaged Area Restoration Project in greenbelts. The current status of greenbelts in Gyeonggi-do, where greenbelts are extensively distributed was analyzed, and the relevant laws and regulations were reviewed to suggest measures to promote the restoration project. The area of damaged areas within greenbelts in Gyeonggi-do was 6,121,024 m2, accounting for about 0.52% of the total area of greenbelts, and more than 80% was found to be located in Namyangju (55.49%), Hanam (16.48%), and Siheung (8.68%). Various measures to improve the policy were examined as follows: reducing the minimum size of the restoration project area; adjusting baseline of recognizing range of damaged areas; introducing the right of claim for land sale; allowing long-term unexecuted urban parks to be replaced as alternative sites for parks and green spaces; simplifying administrative procedures; and allowing public participation. All of them are expected to promote the restoration project within greenbelts. In results, when the minimum size of area for the restoration project was reduced from 10,000 m2 into 5,000 m2, 3,000 m2 and 2,000 m2, the ratio of the number of combinable lots to the total number of lots increased from 4.4% to 18.8%, 38.8%, and 55.9% respectively in Namyangju. Morever, when the recognizable ranges of the restoration project were extended to the structures obtaining building permit as of March 30, 2016 and obtaining use approvals before December, 2017, the number of applicable lots increased by 5.1% and 9.2% respectively.

On the Influenced evaluation of ground Vibration to Closed building structure by Drop hammer pilling. (항타작업으로 인한 지반진동이 인접 빌딩 구조물에 미치는 영향평가)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.10 no.1
    • /
    • pp.3-7
    • /
    • 1992
  • In the pilling works in the city, it is tend to transfered to the non-vibration pilling works. This drop-hammer pilling executed with in 2 meters distance to neighbour building structure. in the rainy season. According to imperical formula which tested in similar site, Vibration damaged area is within 14 meters radius from drop-hammer pilling site. The loratories Data of Dae Woo of Korea hausing Authority are refered to above poject.

  • PDF

Study on Database Construction of Demilitarized Zone (비무장지대(DMZ) 훼손지 데이터베이스 구축연구)

  • Sung, Hyun-Chan;Seo, Joung-Young;Lee, Sang-Mi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.1
    • /
    • pp.143-150
    • /
    • 2017
  • In this study, we intend to integrate the database(DB) method into one logical structure that is related to damage such as cause and type of damages occurring in the DMZ area. We divided the DMZ members into two types, which are classified into qualitative and quantitative aspects based on the current status survey for three years as a study of database construction, So that the actual data can be utilized in future restoration. The database construction through each restoration direction regarding the type of DMZ corruption is as follows. First, we recognized the necessity of restoration of the damaged area of the DMZ, and approached it as a plan to select the damaged mark. Second, DMZ database reconstruction can be used as a restoration of damages, suggesting more information and restoration type through building an ecological database for education and research. Third, in order to maintain and restore restoration of damaged areas continuously at the national level, it is necessary to institutionalize guidelines for reasonable internal restoration in the national level as data that can be credited externally and can be acknowledged as the latest data.

Hydrogen explosion effects at a containment building following a severe accident (중대사고시 수소폭발이 격납건물에 미치는 영향)

  • Ryu, Myeong-Rok;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.165-173
    • /
    • 2016
  • On March 11, 2011, a massive earthquake measuring 9.0 on the Richter scale and subsequent 10-.14 m waves struck the Fukushima Daiichi (FD) Nuclear Power Plant. The main and backup electric power was damaged preventing the cooling system from functioning. Fuel rods overheated and led to hydrogen explosions. If heat in the fuel rods is not dissipated, the nuclear fuel coating material (e.g., Zircaloy) reacts with water vapor to generate hydrogen at high temperatures. This hydrogen is released into the containment area. If the released hydrogen burns, the stability of the containment area is significantly impacted. In this study, researchers performed an explosion analysis in a high-risk explosion area, analyzing the hydrogen distribution in a containment building [1] and the effects of a hydrogen explosion on containment safety. Results indicated that a hydrogen explosion was possible throughout the containment building except the middle area. If an explosion occurs at the top of the containment building with more than 40% of the hydrogen collected or in the bottom right or left side of the of containment building, safety of the containment building could be threatened.

Analysis of the Impact of Building Congested Area for Urban Flood Analysis (도심지 침수해석을 위한 건축물 밀집 지역 영향 분석)

  • Kim, Sung-Uk;Jun, Kye-Won;Lee, Seung-Hee;Pi, Wan-Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.41-46
    • /
    • 2022
  • Recently, the scale of flood damage occurring in urban areas is increasing due to climate change and urbanization, so various flooding analysis techniques are needed. In the Sadangcheon Stream basin, which has been continuously flooded since 2010, a basic plan for improving drainage was established using XP-SWMM and measures to prevent flooding were proposed. However, in the process of inundation analysis, the analysis considering the city's buildings was not conducted, resulting in a problem that the degree of flooding damage tends to be overestimated. Therefore, in this study, XP-SWMM was used to compare and analyze cases where buildings were not considered and designated as inactive areas. As a result of the study, it was analyzed if the building was not considered, the flood damaged area was 271,100 m2 and the depth of submersion was 0.15 m, and if the building was considered inactive area, the flood damaged area was 172,900 m2 and the depth of submersion was 0.32 m that it is under-estimated about 36% and an flow velocity around the building increased from 1.62 m/s to 1.83 m/s about 1.12 times.