• 제목/요약/키워드: Damage scenario

검색결과 314건 처리시간 0.033초

Crush Analysis of a TTX M-Car Design (TTX 구동차 설계안의 충돌압괴특성 분석)

  • Jung Hyun-Seung;Kwon Tae-Soo;Koo Jeong-Seo;Cho Tae-Min
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.616-621
    • /
    • 2004
  • In this paper, the crush characteristics of a tilting train express (TTX) M-car design are evaluated with a head-on collision scenario. Its body shell is divided into three parts - front end, middle section, and rear end. For each part, crush-force relation is evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. TTX's embody structure is a hybrid type structure made of steel and composite materials. Composite sandwich panels are modeled as layered shells whose layers have different material properties. And a damage material model is used to consider the effect of stiffness degradation during deformation. The crush characteristics obtained from these calculations will be used as material modeling data of full-rake collision analyses.

  • PDF

New indices of structural robustness and structural fragility

  • Andre, Joao;Beale, Robert;Baptista, Antonio M.
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.1063-1093
    • /
    • 2015
  • Structural robustness has become an important design variable. However, based on the existing definitions of structural robustness it is often difficult to analyse and evaluate structural robustness, and sometimes not efficient since they mix structural robustness with several other structural variables. This paper concerns the development of a new structural robustness definition, and structural robustness and structural fragility indices. The basis for the development of the new indices is the analysis of the damage energy of structural systems for a given hazard scenario and involves a criterion to define an "unavoidable collapse" state. Illustrative examples are given detailing the steps and calculations needed to obtain values for both the structural robustness and the structural fragility indices. Finally, this paper presents the main advantages of the newly proposed definition and indices for the structural risk analysis over existing traditional methods.

Researching impact of climate change and economic development on the water supply deficit of Ta Keo reservoir, Lang Sonprovince, Viet Nam

  • Chin, L.V.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.199-199
    • /
    • 2016
  • In recent decades, climate change phenomenon has developed towards critical tendency and increased in both frequency, intensity and time which causes catastrophic damage in both people and property, especially in the field of agriculture and water resources. At the current, some researches in the world and Viet Nam studies on climate change impacts on the water resources sectors. Results of scientists'studies showed that climate change will seriously impact productivity, livelihoods and the environment on a global scale; especially large flood phenomena increasingly developing in intensity, drought more violently occurring in a long time. In recent years, the shortage of water supply for economic activity has started to happen with quite serious degree at the Viet Nam, especially in the northern mountainous provinces of Viet Nam.

  • PDF

Researching impact of climate change and economic development on the water supply deficit of Dong Quan reservoir, Ha Noi Capital, Viet Nam

  • Chin, L.V.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.190-190
    • /
    • 2017
  • In recent decades, climate change phenomenon has developed towards critical tendency and increased in both frequency, intensity and time which causes catastrophic damage in both people and property, especially in the field of agriculture and water resources. At the current, some researches in the world and Viet Nam studies on climate change impacts on the water resources sectors. Results of scientists' studies showed that climate change will seriously impact productivity, livelihoods and the environment on a global scale; especially large flood phenomena increasingly developing in intensity, drought more violently occurring in a long time. In recent years, the shortage of water supply for economic activity has started to happen with quite serious degree at the Viet Nam, especially in the northern provinces of Viet Nam.

  • PDF

Theoretical and practical discussion of drive-by monitoring of railway bridges using in-service vehicles

  • Achraf Zouizza;Malika Azmi
    • Structural Monitoring and Maintenance
    • /
    • 제11권2호
    • /
    • pp.149-171
    • /
    • 2024
  • Drive-by monitoring (also known as indirect monitoring or mobile sensing) of bridges has obvious advantages when compared to other approaches of Structural Health Monitoring. The underlying concept involves leveraging the coupling between the vertical vibrations of the bridge and those generated in the passing vehicle. In this scenario, the vehicle serves as both the initiator and recipient of the vibrations, which can provide information on the structural condition of the bridge. In the literature, a wide range of methods has been proposed, primarily focused on highway bridges. However, limited research has been published to assess the suitability of indirect methods for monitoring railway bridges, bounded to numerical studies based on theoretical simulations and, rarely, on experimental investigations. The aim of this work is to contribute to filling this gap and explore the feasibility of implementing drive-by monitoring for railway bridges using in-service vehicles and discuss its potential applicability, from theoretical and practical point of view, with illustration through real case studies from the Moroccan railway network.

Verification of Applicability of Emergency Recovery Scenario Applying Field Recovery Case (현장복구사례를 이용한 긴급복구 시나리오의 적용성 검증)

  • Yoon, Hyuk-Jin;Jung, Jae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제19권2호
    • /
    • pp.632-638
    • /
    • 2018
  • Recently, damage to waterside structures, such as bridges or retaining walls, is increasing due to typhoons, flooding, aging, etc. In such cases, the damage is not limited to the structures themselves, but can include effects on a wider scale, such as the suspension of and restriction of access to the facilities, human injury, economic loss, etc. To preclude such damage, recovery methods suitable for the particular field circumstances should be applied when damage occurs. By enforcing prompt repairs, the material and human damage and losses that can occur can be minimized. Since the impact of losses caused by damage and disaster increases with the elapse of time, emergency recovery is even more important. In the emergency recovery process, appropriate repair and reinforcement is crucial. In the present study, the derivation scenarios of the emergency recovery method were applied to some field recovery cases, and their applicability was verified by comparison with the recovery methods actually used. It is expected that the results of this study will be useful for practical application, by suggesting more appropriate recovery methods.

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

Consequence Analysis for Release Scenario of Buried High Pressure Natural Gas Pipeline (지하매설 도시가스배관의 누출시나리오에 따른 사고피해영향분석)

  • Kim, Jin Hyung;Ko, Byung Seok;Yang, Jae Mo;Ko, Sang-Wook;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • 제18권3호
    • /
    • pp.67-74
    • /
    • 2014
  • Buried natural gas pipelines in densely populated urban areas have serious hazards of property damages and casualties generated by release, dispersion, fire and explosion of gas caused by outside or inside failures. So as to prevent any accident in advance, managers implement danger management based on quantitative risk analysis. In order to evaluate quantitative risk about buried natural gas pipelines, we need calculation for radiant heat and pressure wave caused by calculation for release rate of chemical material, dispersion analysis, fire or explosion modeling through consequence analysis in priority, in this paper, we carry out calculation for release rate of pressured natural gas, radiant heat of fireball based in accident scenario of actual "San Bruno" buried high pressured pipelines through models which CCPS, TNO provide and compare with an actual damage result.

Analysis of Spatiotemporal Changes in Groundwater Recharge and Baseflow using SWAT and BFlow Models (SWAT 모형과 BFlow를 이용한 지하수 함양, 기저유출의 시공간적 변화 분석)

  • Lee, Ji Min;Park, Youn Shik;Jung, Younghun;Cho, Jaepil;Yang, Jae Eui;Lee, Gwanjae;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • 제30권5호
    • /
    • pp.549-558
    • /
    • 2014
  • Occurrence frequency of flood and drought tends to increase in last a few decades, leading to social and economic damage since the abnormality of climate changes is one of the causes for hydrologic facilities by exceedance its designed tolerance. Soil and Water Assessment Tool (SWAT) model was used in the study to estimate temporal variance of groundwater recharge and baseflow. It was limited to consider recession curve coefficients in SWAT model calibration process, thus the recession curve coefficient was estimated by the Baseflow Filter Program (BFLOW) before SWAT model calibration. Precipitation data were estimated for 2014 to 2100 using three models which are GFDL-ESM2G, IPSL-CM5A-LR, and MIROC-ESM with Representative Concentration Pathways (RCP) scenario. SWAT model was calibrated for the Soyang watershed with NSE of 0.83, and $R^2$ of 0.89. The percentage to precipitation of groundwater recharge and baseflow were 27.6% and 17.1% respectively in 2009. Streamflow, groundwater recharge, and baseflow were estimated to be increased with the estimated precipitation data. GFDL-ESM2g model provided the most large precipitation data in the 2025s, and IPSL-CM5A-LR provided the most large precipitation data in the 2055s and 2085s. Overall, groundwater recharge and baseflow displayed similar trend to the estimated precipitation data.

Advanced Time-Cost Trade-Off Model using Mixed Integer Programming (혼합정수 프로그래밍 기법을 이용한 진보된 Time-Cost Trade-Off Model)

  • Kwon, Obin;Lee, Seunghyun;Son, Jaeho
    • Korean Journal of Construction Engineering and Management
    • /
    • 제16권6호
    • /
    • pp.53-62
    • /
    • 2015
  • Time-Cost Trade-Off (TCTO) model is an important model in the construction project planning and control area. Two types of Existing TCTO model, continuous and discrete TCTO model, have been developed by researchers. However, Using only one type of model has a limitation to represent a realistic crash scenario of activities in the project. Thus, this paper presents a comprehensive TCTO model that combines a continuous and discrete model. Additional advanced features for non-linear relationship, incentive, and liquidated damage are included in the TCTO model. These features make the proposed model more applicable to the construction project. One CPM network with 6 activities is used to explain the proposed model. The model found an optimal schedule for the example to satisfy all the constraints. The results show that new model can represent more flexible crash scenario in TCTO model.