• 제목/요약/키워드: Damage probability

검색결과 580건 처리시간 0.023초

Optimal Target Reliability of Bridges Based on Minimum Life-Cycle Cost Consideration

  • Wang, Junjie;Lee, J-C
    • Computational Structural Engineering : An International Journal
    • /
    • 제2권1호
    • /
    • pp.11-17
    • /
    • 2002
  • Cost-effectiveness in design is considered for determining the target reliability of concrete bridges under seismic actions. This objective can be achieved based on the economic optimization of the expected life-cycle cost of a bridge, which includes initial cost, direct losses, and indirect losses of a bridge due to strong earthquakes over its lifetime. A separating factor is defined to consider the redundancy of a transportation network. The Park-Ang damage model is employed to define the damage of a bridge under seismic action, and a Monte Carlo method based on the DRAIN-2DX program is developed to assess the failure probability of a bridge. The results for an example bridge analyzed in this paper show that the optimal target failure probability depends on the traffic volume carried by the bridge and is between 1.0×10/sup -3/ to 3.0×10/sup -3/ over a life of 50 years.

  • PDF

상부공격 지능탄 무기효과 평가모델 (A Weapon Effectiveness Evaluation Model for Top-Attack Smart Munitions)

  • 강민아
    • 한국군사과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.458-466
    • /
    • 2012
  • We have developed a weapon effectiveness evaluation model for top-attack smart munitions(WEEM/TASM), which is a many on many Monte Carlo Model evaluating the effectiveness of top-attack smart munitions against armoured ground vehicles. In this model the battle is reduced to a one-sided battle situation in that the target vehicles are regarded as being stationary and passive. It can simulate the whole attack process of smart munitions from firing artillery dispenser to sensing and hitting processes after dispense. It can also calculate the probability of kill of each target and the numbers of rounds required to fulfill the degree of damage in statistical manners. In this paper, we describe the basis for our design concepts reflected in the model to simulate the weapon effectiveness of top-attack smart munitions and provide simulation results for an example case.

원전 배관의 파손확률평가를 위한 P-PIE 프로그램의 개발 (Development of P-PIE Program for Evaluating Failure Probability of Pipes in Nuclear Power Plants)

  • 박재학;이재봉;최영환
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.1-8
    • /
    • 2010
  • P-PIE program is developed for evaluating failure probability of pipes in nuclear power plants based on the existing PRAISE program. In the program, crack growth due to fatigue loading and stress corrosion can be considered and the probability of fracture or leakage of pipes can be calculated. Crack growth simulation is performed based on stress intensity factor and a damage parameter and failure of a pipe is determined based on J integral or net section yielding. Using the developed program the failure probabilities of tubes in a domestic nuclear power is obtained and discussed.

독성물질 사용.저장시설에 대한 개인적 위험성 산정에 관한 연구 (A Study on the Individual and Societal Risk Estimation for the Use and Storage Facility with Toxic Materials)

  • 김성빈;김윤화;이철;엄성인;고재욱;백종배
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.51-59
    • /
    • 1997
  • These days leakage incidents of toxic materials cause serious effects on the nearby residents as well as the workers around the accidents accompanying massive material losses and human damages through widening influential areas. The risk measure through adequate quantitative analysis as well as the qualitative analysis of the leakage incidents of toxic materials becomes an urgent issue. The damage of the leakage incident on the surrounding area of the dangerous toxic material facilities was calculated quantitatively by adopting several models in this research. First, the calculations of the leakage velocity from the factories were performed by using source model for the assessment of the influential area, and the damages on the nearly residents were calculated by using the dispersion model and the effort model. The probability of the Incidents was computed based on "The manual for classification and priorization of major incidents" published by IAEA( International Atomic Energy Agency ). Above calculated damage area and incident probability were further adopted in this study to induce the individual and societal risk, quantitatively. The calculated data of the real Incident of the toxic material leakage showed reasonable agreements to the actual damage of the incidents, which showed a validity of this study. The result of this study might be a helpful measure for predicting damages and preparing safety systems for similar kinds of incidents.incidents.

  • PDF

Degradation reliability modeling of plain concrete for pavement under flexural fatigue loading

  • Jia, Yanshun;Liu, Guoqiang;Yang, Yunmeng;Gao, Ying;Yang, Tao;Tang, Fanlong
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.469-478
    • /
    • 2020
  • This study aims to establish a new methodological framework for the evaluation of the evolution of the reliability of plain concrete for pavement vs number of cycles under flexural fatigue loading. According to the framework, a new method calculating the reliability was proposed through probability simulation in order to describe a random accumulation of fatigue damage, which combines reliability theory, one-to-one probability density functions transformation technique, cumulative fatigue damage theory and Weibull distribution theory. Then the statistical analysis of flexural fatigue performance of cement concrete tested was carried out utilizing Weibull distribution. Ultimately, the reliability for the tested cement concrete was obtained by the proposed method. Results indicate that the stochastic evolution behavior of concrete materials under fatigue loading can be captured by the established framework. The flexural fatigue life data of concrete at different stress levels is well described utilizing the two-parameter Weibull distribution. The evolution of reliability for concrete materials tested in this study develops by three stages and may corresponds to develop stages of cracking. The proposed method may also be available for the analysis of degradation behaviors under non-fatigue conditions.

SKD11 절단금형치구용 소재의 마모손상에 관한 연구 (A study on wear damage of SKD11 steel material for a cutting mold jig)

  • 남기우;김철수;안석환
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.5-13
    • /
    • 2016
  • This study is on wear damage of the material for a molding machine that be used at finally cutting of metal beam made in roll forming process of vehicle bump beam process line. SKD11 steel was used with the material for cutting mold jig. In the cutting mold jig, Ti diffusion heat treatment after vacuum heat treatment was carried out for upgrade of surface hardness and anti-wear. Also, the heat treatments by various methods were performed to compare the wear damage degree against above the existing heat treatment. Wear loss and friction coefficient were obtained from wear test. And, micro Vickers hardness values were compared with damaged parts or not of cutting mold jig. Micro Vickers hardness value appeared higher at the undamaged part by Ti diffusion heat treatment. The micro Vickers hardness well followed a two-parameter Weibull probability distribution.

Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes

  • Yon, Burak
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.709-718
    • /
    • 2020
  • Fragility curves are useful tools to estimate the damage probability of buildings owing to seismic actions. The purpose of this study is to investigate seismic vulnerability of reinforced concrete (RC) buildings, according to the 2007 and 2018 Turkish Seismic Codes, using fragility curves. For the numerical analyses, typical five- and seven-storey RC buildings were selected and incremental dynamic analyses (IDA) were performed. To complete the IDAs, eleven earthquake acceleration records multiplied by various scaling factors from 0.2g to 0.8g were used. To predict nonlinearity, a distributed hinge model that involves material and geometric nonlinearity of the structural members was used. Damages to confined concrete and reinforcement bar of structural members were obtained by considering the unit deformation demands of the 2007 Turkish Seismic Code (TSC-2007) and the 2018 Turkey Building Earthquake Code (TBEC-2018). Vulnerability evaluation of these buildings was performed using fragility curves based on the results of incremental dynamic analyses. Fragility curves were generated in terms of damage levels occurring in confined concrete and reinforcement bar of structural members with a lognormal distribution assumption. The fragility curves show that the probability of damage occurring is more according to TBEC-2018 than according to TSC-2007 for selected buildings.

Fragility evaluation of integral abutment bridge including soil structure interaction effects

  • Sunil, J.C.;Atop, Lego;Anjan, Dutta
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.201-213
    • /
    • 2021
  • Contrast to the conventional jointed bridge design, integral abutment bridges (IABs) offer some marked advantages like reduced maintenance and enhanced service life of the structure due to elimination of joints in the deck and monolithic construction practices. However, the force transfer mechanism during seismic and thermal movements is a topic of interest owing to rigid connection between superstructure and substructure (piers and abutments). This study attempts to model an existing IAB by including the abutment backfill interaction and soil-foundation interaction effects using Winkler foundation assumption to determine its seismic response. Keeping in view the significance of abutment behavior in an IAB, the probability of damage to the abutment is evaluated using fragility function. Incremental Dynamic Analysis (IDA) approach is used in this regard, wherein, nonlinear time history analyses are conducted on the numerical model using a selected suite of ground motions with increasing intensities until damage to abutment. It is concluded from the fragility analysis results that for a MCE level earthquake in the location of integral bridge, the probability of complete damage to the abutment is minimal.

Damage detection using both energy and displacement damage index on the ASCE benchmark problem

  • Khosraviani, Mohammad Javad;Bahar, Omid;Ghasemi, Seyed Hooman
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.151-165
    • /
    • 2021
  • This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six-story steel building structure with single and multiple damage cases.

Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke;Chi, Bo
    • Earthquakes and Structures
    • /
    • 제22권4호
    • /
    • pp.387-399
    • /
    • 2022
  • To study the seismic damage of masonry structures and understand the characteristics of the multi-intensity region, according to the Dujiang weir urbanization of China Wenchuan earthquake, the deterioration of 3991 masonry structures was summarized and statistically analysed. First, the seismic damage of multistory masonry structures in this area was investigated. The primary seismic damage of components was as follows: Damage of walls, openings, joints of longitudinal and transverse walls, windows (lower) walls, and tie columns. Many masonry structures with seismic designs were basically intact. Second, according to the main factors of construction, seismic intensity code levels survey, and influence on the seismic capacity, a vulnerability matrix calculation model was proposed to establish a vulnerability prediction matrix, and a comparative analysis was made based on the empirical seismic damage investigation matrix. The vulnerability prediction matrix was established using the proposed vulnerability matrix calculation model. The fitting relationship between the vulnerability prediction matrix and the actual seismic damage investigation matrix was compared and analysed. The relationship curves of the mean damage index for macrointensity and ground motion parameters were drawn through calculation and analysis, respectively. The numerical analysis was performed based on actual ground motion observation records, and fitting models of PGA, PGV, and MSDI were proposed.