• Title/Summary/Keyword: Damage probability

Search Result 585, Processing Time 0.026 seconds

Statistics and probability analysis of vehicle overloads on a rigid frame bridge from long-term monitored strains

  • Li, Yinghua;Tang, Liqun;Liu, Zejia;Liu, Yiping
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.287-301
    • /
    • 2012
  • It is well known that overloaded vehicles may cause severe damages to bridges, and how to estimate and evaluate the status of the overloaded vehicles passing through bridges become a challenging problem. Therefore, based on the monitored strain data from a structural health monitoring system (SHM) installed on a bridge, a method is recommended to identify and analyze the probability of overloaded vehicles. Overloaded vehicle loads can cause abnormity in the monitored strains, though the abnormal strains may be small in a concrete continuous rigid frame bridge. Firstly, the abnormal strains are identified from the abundant strains in time sequence by taking the advantage of wavelet transform in abnormal signal identification; secondly, the abnormal strains induced by heavy vehicles are picked up by the comparison between the identified abnormal strains and the strain threshold gotten by finite element analysis of the normal heavy vehicle; finally, according to the determined abnormal strains induced by overloaded vehicles, the statistics of the overloaded vehicles passing through the bridge are summarized and the whole probability of the overloaded vehicles is analyzed. The research shows the feasibility of using the monitored strains from a long-term SHM to identify the information of overloaded vehicles passing through a bridge, which can help the traffic department to master the heavy truck information and do the damage analysis of bridges further.

Analysis of Failure Probability of Armor Units and Uncertainties of Design Wave Heights due to Uncertainties of Parameters in Extreme Wave Height Distributions (극치파고분포의 모수 불확실성에 따른 설계파고의 불확실성 및 피복재의 파괴확률 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can take uncertainties of scale and location parameters of Gumbel distribution into account straightforwardly in evaluating significant design wave heights with respect to return periods. The uncertainties of design wave heights may directly depend on the amounts of uncertainties of scale parameter and those distributions may be followed by Gumbel distribution. In case of that the expected values of maximum significant wave height during lifetime of structures are considered to be the design wave heights, more uncertainties are happened than in those evaluated according to return periods with encounter probability concepts. In addition, reliability analyses on the armor units are carried out to investigate into the effects of the uncertainties of design wave heights on the probability of failure. The failure probabilities of armor units to 5% damage level for 50 return periods are evaluated and compared according to the methods of taking uncertainties of design wave heights into account. It is found that the probabilities of failure may be distributed into wide ranges of bounds when the uncertainties of design wave heights are assumed to be same as those of annual maximum significant wave heights.

Analysis of the Collision Probability and Mission Environment for Space debris (아리랑 위성 2호와 5호의 우주파편에 대한 충돌확률 및 임무환경 분석)

  • Seong, Jae-Dong;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1144-1151
    • /
    • 2010
  • The increasing number of orbital debris objects is a risk for satellites because of past 50 years space activities. The LEO (low earth orbit) where KOMPSAT-2 and KOMPSAT-5 are operated is including about 84% of the total space debris. Thus, the space missions need to consider the space debris. In this paper, we analysis the orbit characteristics and spatial density of space debris about KOMPSAT-2 that is in activity and KOMPSAT-5 that will be launched in 2010. Analyzed probability damage and collision with space debris are also performed. ESA MASTER2005 and of NASA DAS2.0 are used to analysis KOMPSAT mission environment. As a result, it is noted that KOMPSAT-2's collision probability was far more than KOMPSAT-5 because KOMPSAT-2's orbit has high density composed space debris.

Improved RPV(reactive-power-variation) anti-islanding method for grid-connected three-phase PVPCS (3상 계통연계형 태양광 PCS의 단독운전검출을 위한 개선된 무효전력변동기법)

  • Lee, K.O.;Jung, Y.S.;So, J.H.;Yu, B.G.;Yu, G.J.;Choi, J.Y.;Choy, I.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1159-1160
    • /
    • 2006
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, this has raised potential problems of network protection on electrical power system. One of the numerous problems is an Island phenomenon. There has been an argument that because the probability of islanding is extremely low it may be a non-issue in practice. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an island can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficient to cause a trip, plus the time required to execute the trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. And, third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an island. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. So the verification of anti-islanding performance is strongly needed. In this paper, the authors propose the improved RPV method through considering power quality and anti-islanding capacity of grid-connected three-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation and experimental results are verified.

  • PDF

A Study on the Seismic Damage Estimation in the Model District of Seoul City (서울시 모델 구역 지진피해 추정 연구)

  • Yoon, Eui-Taek;Ryu, Hyeuk;Kang, Tae-Seob;Kim, Jae-Kwan;Baag, Chang-Eob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.41-52
    • /
    • 2005
  • The seismic damage assessment due io the postulated earthquake was attempted for the buildings in the model district of Seoul City. The model district was selected to represent the typical structural and residential characteristics of Seoul City. The buildings in the model district were classified into 11 structural types. For each structural type, the capacity and fragility curves were constructed with parameters presented in HAZUS. The ground motions due to the postulated earthquakes were artificially generated and ground response analyses were done for three kinds of soil profiles classified with respect to the depth of surface soil layer. The probability of damage state of each structural type was calculated using capacity spectrum method and fragility curve. Finally, the calculated results were translated into GIS database and mapped to evaluate the seismic damage in the model district.

A Probabilistic Model of Damage Propagation based on the Markov Process (마코프 프로세스에 기반한 확률적 피해 파급 모델)

  • Kim Young-Gab;Baek Young-Kyo;In Hoh-Peter;Baik Doo-Kwon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.524-535
    • /
    • 2006
  • With rapid development of Internet technology, business management in an organization or an enterprise depends on Internet-based technology for the most part. Furthermore, as dependency and cohesiveness of network in the communication facilities are increasing, cyber attacks have been increased against vulnerable resource in the information system. Hence, to protect private information and computer resource, research for damage propagation is required in this situation. However the proposed traditional models present just mechanism for risk management, or are able to be applied to the specified threats such as virus or worm. Therefore, we propose the probabilistic model of damage propagation based on the Markov process, which can be applied to diverse threats in the information systems. Using the proposed model in this paper, we can predict the occurrence probability and occurrence frequency for each threats in the entire system.

Seismic Reliability Assessment of the Korean 345 kV Electric Power Network considering Parallel Operation of Transformers (변압기의 병렬 운전을 고려한 국내 345kV 초고압 전력망의 지진 재해 신뢰성 평가)

  • Park, Won-Suk;Park, Young-Jun;Cho, Ho-Hyun;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.13-20
    • /
    • 2006
  • Substations in electric power transmission network systems (EPTS) operate using several transformers in parallel to increase the efficiency in terms of stability of energy supply. We present a seismic reliability assessment method of EPTS considering the parallel operation of transformers. Two methods for damage state model are compared in this paper: bi-state and multi-damage model. Simulation results showed that both models yielded similar network reliability indices and the reliability indices of the demand nodes using hi-state model exhibited higher damage probability. Particularly, the corresponding EENS (Expected Energy Not Supplied) index was significantly larger than that of the multi-damage state.

Probabilistic Analysis of Blasting Loads and Blast-Induced Rock Mass Responses in Tunnel Excavation (터널발파로 인한 굴착선주변 암반거동의 확률론적 연구)

  • 이인모;박봉기;박채우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.89-102
    • /
    • 2004
  • The generated blasting pressure wave initiated under decoupled-charge condition is a function of peak blasting pressure, rise time, and wave-shape function. The peak blasting pressure and the rise time are also the function of explosive and rock properties. The probabilistic distributions of explosive and rock properties are derived from the results of their property tests. Since the probabilistic distributions of explosive and rock properties displayed a normal distribution, the peak blasting pressure and the rise time can also be regarded as a normal distribution. Parameter analysis and uncertainty analysis were performed to identify the most influential parameter that affects the peak blasting pressure and the rise time. Even though the explosive properties were found to be the most influential parameters on the peak blasting pressure and the rise time from the parameter analyses, the result of uncertainty analysis showed that rock properties constituted major uncertainties in estimating the peak blasting pressure and the rise time rather than explosive properties. Damage and overbreak of the remaining rock around the excavation line induced by blasting were evaluated by dynamic numerical analysis. A user-subroutine to estimate the rock damage was coded based on the continuum damage mechanics. This subroutine was linked to a commercial program called 'ABAQUS/Explicit'. The results of dynamic numerical analysis showed that the rock damages generated by the initiation of stopping hole were larger than those from the initiation of contour hole. Several methods to minimize those damages were proposed such as relocation of stopping hole, detailed subdivision of rock classification, and so on. It was found that fracture probability criteria and fractured zones could be distinctively identified by applying fuzzy-random probability.

Research on flood risk forecast method using weather ensemble prediction system in urban region (앙상블 기상예측 자료를 활용한 도시지역의 홍수위험도 예측 방안에 관한 연구)

  • Choi, Youngje;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.753-761
    • /
    • 2019
  • Localized heavy storm is one of the major causes of flood damage in urban regions. According to the recent disaster statistics in South Korea, the frequency of urban flood is increasing more frequently, and the scale is also increasing. However, localized heavy storm is difficult to predict, making it difficult for local government officials to deal with floods. This study aims to construct a Flood risk matrix (FRM) using ensemble weather prediction data and to assess its applicability as a means of reducing damage by securing time for such urban flood response. The FRM is a two-dimensional matrix of potential impacts (X-axis) representing flood risk and likelihood (Y-axis) representing the occurrence probability of dangerous weather events. To this end, a regional FRM was constructed using historical flood damage records and probability precipitation data for basic municipality in Busan and Daegu. Applicability of the regional FRMs was assessed by applying the LENS data of the Korea Meteorological Administration on past heavy rain events. As a result, it was analyzed that the flood risk could be predicted up to 3 days ago, and it would be helpful to reduce the damage by securing the flood response time in practice.

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.