• 제목/요약/키워드: Damage parameters

검색결과 1,537건 처리시간 0.028초

참다래 과수나무의 바람 피해 저감을 위한 실험적 연구 (Experimental Study for Reducing Wind Damage on Kiwi Fruit Plant)

  • 강종훈;임대현;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.263-264
    • /
    • 2006
  • In this study, the threshold wind speed that causes physical damage on Kiwi fruit plant was investigated through wind tunnel experiments. Total 30 samples of Kiwi fruit branches were tested. On average, the wind speeds for tearing leaves and breaking side branch from the main branch were about 20m/s and 21.7m/s, respectively. For the cases of broken branches, the average length and diameter of the branches were 587.5mm and 7.2mm, respectively. The discoloration and dehydration of Kiwi plant were also observed by photographing leaves and branches after 24 hour later of the wind damage. In addition, the shelter effect of porous wind fences which have been used at agricultural districts was examined with varying several parameters.

  • PDF

Fault Detection of an Intelligent Cantilever Beam with Piezoelectric Materials

  • Kwon, Tae-Kyu;Lim, Suk-Jeong;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.97.2-97
    • /
    • 2002
  • A method for the non-destructive detection of damage using parameterized partial differential equations and Galerkin approximation techniques is presented. This method provides the theoretical and experimental verification of a nondestructive time domain approach to examine structural damage in smart structure. The time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the beam-like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters and to detect the...

  • PDF

마멸입자 형태분석에 의한 자동차 트랜스미션 기어의 손상상태 평가 (Estimation of Damage Condition for the Automobile Transmission Gear by Morphological Analysis of Wear Debris)

  • 박흥식;조연상;배효준;이상재
    • Tribology and Lubricants
    • /
    • 제17권1호
    • /
    • pp.16-21
    • /
    • 2001
  • The wear particles is released from the moving surfaces in gear systems of transmission and its morphology is directly related to the damage and failure to gear system from which the particles originated. It is the effective method for damage condition estimation of automobile transmission gear to observe wear debris in gear oil. We tested with new transmission and took out gear oil according to driving distance. To be applied to damage condition of gear system in transmission of automobile,4 shape parameters of wear particles in gear oil were calculated and wear volume were presumed with the image processing system.

Modified gradient methods hybridized with Tikhonov regularization for damage identification of spatial structure

  • Naseralavi, S.S.;Shojaee, S.;Ahmadi, M.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.839-864
    • /
    • 2016
  • This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference between the recorded acceleration of a real damaged structure and a hypothetical damaged one. This is performed by updating physical parameters (module of elasticity in this study) in each step using iterative process of modified nonlinear conjugate gradient (M-NCG) and modified Broyden-Fletcher-Goldfarb-Shanno algorithm (M-BFGS) separately. These algorithms are based on sensitivity analysis and provide a solution for nonlinear damage detection problem. Three illustrative test examples are considered to assess the performance of the proposed method. Finally, it is demonstrated that the proposed method is satisfactory for detecting the location and ratio of structural damage in presence of noise.

손상역학에 의한 크리프 거동 및 수명 모델링 (Modeling Creep Behavior and Life by Damage Mechanics)

  • 신창환;정일섭;채영석
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1833-1840
    • /
    • 2000
  • Commercially pure copper is tested to obtain creep curves at 2500C. Constitutive relations adopting continuum damage mechanics concept is found to be appropriate to model the creep defor mation up to the tertiary stage. Microscopic observation by SEM reveals that creep condition induces cavities and microcracks subsequently. The constitutive equations along with evaluated creep parameters are implemented into finite element analysis code. The analysis reproduces creep curves under step loading as well as constant loading with reasonable accuracy. Distribution and evolution of damage under creep loading are numerically simulated for two different types of notched specimen. Predicted creep life agrees quite well with rupture test results. The influence of mesh size at notch tip on rupture time prediction is studied, and a degree of refinement is suggested for the specific notched specimens.

Comparative Study of Linear and Nonlinear Ultrasonic Techniques for Evaluation Thermal Damage of Tube-Like Structures

  • Li, Weibin;Cho, Younho;Li, Xianqiang
    • 비파괴검사학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube-like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro-damages in a tube-like structure.

프리스트레스트 콘크리트 거더교의 하이브리드 손상 검색 (Hybrid Damage Detection in Prestressed Concrete Girder Bridges)

  • 홍동수;이정미;나원배;김정태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.669-674
    • /
    • 2007
  • To develop a promising hybrid structural health monitoring (SHM) system, a combined use of structural vibration and electro-mechanical (EM) impedance is proposed. The hybrid SHM system is designed to use vibration characteristics as global index and EM impedance as local index. The proposed health monitoring scheme is implemented into prestressed concrete (PSC) girder bridges for which a series of damage scenarios are designed to simulate various prestress-loss situations at which the target bridges car experience during their service life. The measured experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the occurrence of damage and furthermore to indicate its location.

  • PDF

Structural damage detection including the temperature difference based on response sensitivity analysis

  • Wei, J.J.;Lv, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.249-260
    • /
    • 2015
  • Damage detection based on a reference set of measured data usually has the problem of different environmental temperature in the two sets of measurements, and the effect of temperature difference is usually ignored in the subsequent model updating. This paper attempts to identify the structural damage including the temperature difference with artificial measurement noise. Both local damages and the temperature difference are identified in a gradient-based model updating method based on dynamic response sensitivity. The sensitivities of dynamic response with respect to the system parameters and temperature difference are calculated by direct integration method. The measured dynamic responses of the structure from two different states are used directly to identify the structural local damages and the temperature difference. A single degree-of-freedom mass-spring system and a planar truss structure are studied to illustrate the effectiveness of the proposed method.

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

손상영역을 이용한 철근 콘크리트 보의 손상평가 (Damage Assessment of Reinforced Concrete Beams using Damage-area concept)

  • 노원균;심창수;김기봉;김현호;홍창국
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.647-650
    • /
    • 2004
  • This paper deals with the damage assessment of the concrete beam using Damage-area concept and the modulus of elasticity reduction of the beam was evaluated. Simply supported concrete beams were loaded at the mid-span. When the displacements from the tests were increased more than $10\%$ of the initial values, flexural cracks occured. Judging from the observed cracks, damaged area of the beams were assumed and the modulus of elasticity reduction using the smeared-cracking concept was estimated to minimize the error between the test results and analytical results. Main parameters for the assessment were height of the crack area, length of the crack area, position of the crack area and the modulus of elastic reduction ratio. In each stage, damaged elements and their stiffness reduction were estimated to minimized the error.

  • PDF