• Title/Summary/Keyword: Damage parameters

Search Result 1,537, Processing Time 0.037 seconds

System Identification in Time Domain for Structural Damage Assessment (구조물 손상 탐지를 위한 시간 영역에서의 SI기법)

  • 이해성;박승근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.614-618
    • /
    • 2003
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least square errors between the measured acceleration and the calculated acceleration by a mathmatical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping. A new regularization function defined by the L$_1$-norm of the first derivative of system parameters with respect to time is proposed to alleviate the ill-posed characteristics of inverse problems and to accommodate discontinuities of system parameters in time. The time window concept is proposed to trace variation of system parameters in time.

  • PDF

Comparison of Impedance Parameters and Occupational Therapy Evaluation in the Paretic and Non-paretic Upper Extremity of Hemiplegic Stroke Patients

  • Yoo, Chan-Uk;Kim, Jaehyung;Hwang, Youngjun;Kim, Gunho;Shin, Yong-Il;Jeon, Gyerok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1980-1991
    • /
    • 2017
  • Many stroke patients undergoing rehabilitation therapy require a quantitative indicator for the evaluation of body function in paretic and non-paretic regions. In this study, the impedance parameters were acquired to assess the physical status in the upper extremity of thirty six stroke patients with hemiplegia caused by cerebral hemorrhage (10 patients) and cerebral infarction (26 patients), using bioelectrical impedance. Prediction marker (PM), phase angle (PA), PM/PA, and resistance (R) versus reactance ($X_c$) were utilized to evaluate the functional status of the paretic and non-paretic regions. In addition, the hand grip strength (HGS) and the pinch strength (lateral, palmer, tip) were measured on the upper extremity of hemiplegic stroke patients. PM was distributed in inversely proportional to HGS, but PA was distributed in proportional to HGS. However, there were a number of patients with HGS of 0, regardless of the impedance parameters (PM, PA, R vs. $X_c$). Paretic and non-paretic status in upper extremity of these patients could not be analyzed using impedance parameters. At the rehabilitation therapist's instructions, they were unable to move the hand and fingers of the paretic upper extremity by cranial nerve damage, motor nerve damage, and severe cognitive decline.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Damage Evaluation of Cracked Laminated Composite Plates Using Experimental Modal Analysis (실험 모드해석을 이용한 균열 적층복합판의 손상평가)

  • Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.399-410
    • /
    • 2012
  • In this study, vibration tests are performed on cantilevered and clamped-clamped laminated composite rectangular plates using experimental modal analysis technique. The damages are simulated by applying progressive line cracks to the laminated composite plates for damage evaluations due to crack growth. The changes of frequency response functions(FRFs), MAC values, and modal parameters (frequency, mode shape and damping ratio) of the damaged composite plates, which are obtained by the modal testing of impact hammer, are investigated. Each experimental modal parameter of the progressively damaged composite plates is compared with natural frequencies and mode shapes obtained by finite element analysis. It is seen that the damage can be evaluated from the changes in the geometric properties and structural behaviors of the laminated composite plates resulting from the model updating process of the finite element model as a benchmark.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

An Evaluation of Aging Degradation Damage for Cr-Mo-V Steel by Electrochemical Potentiokinetic Reactivation Test (재활성화 분극시험에 의한 Cr-Mo-V강의 시효열화 손상 평가)

  • Kwon, Il-Hyun;Na, Sung-Hun;Song, Gee-Wook;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Cr-Mo-V steel is widely used as a material for the turbine structural component in fossil power plants. It is well known that this material shows the various material degradation phenomenons such as temper embrittlement, carbide coarsening. and softening etc. or ins to the severe operation conditions as high temperature and high pressure. These deteriorative factors cause tile change of mechanical properties as reduction of fracture toughness. Therefor it is necessary to evaluate tile extent of degradation damage for Cr-Mo-V steel in life assessment of turbine structural components. In this paper. the electrochemical potentiokinetic reactivation(EPR) test in $50wt%-Ca(NO_3)_2$ solution is performed to develop the newly technique for degradation damage evaluation of Cr-Mo-V steel. The results obtained from the EPR test are compared with those in small punch(SP) tests recommended by semi-nondestructive testing method using miniaturized specimen. The evaluation parameters used in EPR test are tile reactivation current density$(I_R)$ and charge$(Q_{RC})$ reactivation rate$(I_R/I_{Crit},\;Q_R/Q_{Crit})$. The results suggest that $I_R/I_{Crit}$ in these parameters shows a good correlation with SP test results.

  • PDF

Protective Effect of Enerbalance on Cadmium-induced Testicular Damages in Mice (카드뮴에 의해 유도된 마우스의 고환 독성 모델에서 에너발란스의 보호 효과)

  • Park, Kwang-Hyun;Mok, Ji-Ye;Kim, Sung-Zoo;Kang, Hyung-Sub;Shim, Jae-Suk;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.482-488
    • /
    • 2011
  • Cadmium (Cd) is well known as a spermatotoxic and gonadotoxic heavy metal ion. This study was performed to assess the possible protective effect of Enerbalance on Cd-induced spermiotoxicity and testicular damage. The control group received isotonic saline; Cd group received Cd (2 mg/kg BW per day) orally; extract-treated groups were orally administrated with Enerbalance (50 mg and 100 mg/kg BW per day) and Cd for 10 days. Morphological changes of testicular tissue, sperm characteristics, oxidative/antioxidative parameters from testis, and serum sexual hormone level were determined. Enerbalance was significantely increased sperm amount in cauda epididymis without changes of ratio of epididymis/body weight and testis/body weight. Cd caused a marked decrease in epididymal sperm concentration and chemotactic sperm motility, testicular superoxide dismutase (SOD), catalase (CAT), Enerbalance was significantly ameliorated loss of epididymal sperm concentration, sperm chemotactic motility, antioxidative parameters, and male hormone whereas decreased abnormal architecture by testis damage. Enerbalance was successfully attenuated these adverse effects of Cd and offers a dose-dependent protection. Our study demonstrated that Enerbalance could proffer a measure of protection against Cd-induced testicular damage and spermiotoxicity by possibly reducing oxidative stress and increasing the antioxidant defense mechanism in mice.

Reliability Analysis of Fatigue Truck Model Using Measured Truck Traffic Statistics (통행차량 특성을 반영한 강교량 피로설계트럭의 피로파괴 신뢰도해석)

  • Shin, Dong Ku;Kwon, Tae Hyung;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.211-221
    • /
    • 2007
  • A structural reliability analysis of fatigue truck model for fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule expressed as a function of various random variables affecting fatigue damage. Among the variables, the statistical parameters for equivalent moment, impact factor, and loadometer were obtained by analyzing recently measured domestic traffic data, whereas the parameters on fatigue strength, girder distribution factor, and headway factor of the measured data available in the literature were used. The effects of various fatigue truck models, fatigue life, ADTT, fatigue detail category, loadometer, and gross vehicle weight of fatigue truck on the reliability index of fatigue damage were analyzed. It is expected that the analytical results presented herein can be used as a basic background material in the calibration of both fatigue design truck and fatigue load factor of LRFD specification.

Simultaneous identification of damage in bridge under moving mass by Adjoint variable method

  • Mirzaee, Akbar;Abbasnia, Reza;Shayanfar, Mohsenali
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.449-467
    • /
    • 2018
  • In this paper, a theoretical and numerical study on bridge simultaneous damage detection procedure for identifying both the system parameters and input excitation mass, are presented. This method is called 'Adjoint Variable Method' which is an iterative gradient-based model updating method based on the dynamic response sensitivity. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. Moving mass is a model which takes into account the inertia effects of the vehicle. This interaction model is a time varying system and proposed method is capable of detecting damage in this variable system. Robustness of proposed method is illustrated by correctly detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparison study of common sensitivity and proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. Various sources of errors including the effects of measurement noise and initial assumption error in stability of method are also discussed.

Influence of Dietary Factors of Smokers on Smoking-Induced DNA Damage as Reflected by Sister Chromatid Exchanges(SCE) (식이성요인이 SCE 빈도수로 본 흡연자의 DNA 손상에 미치는 영향)

  • 강명희
    • Journal of Nutrition and Health
    • /
    • v.27 no.7
    • /
    • pp.740-751
    • /
    • 1994
  • Sister chromatid exchanges(SCE) in peripheral lymphocytes is recently used as a biomarker for increased cytogenetic damage in smokers. The purpose of the investigation was to determine if there were any relationships between dietary factors and their DNA damage as measured by SCE test in a group of 62 male cigarette smokers and 36 non-smokers. As expected, smokers as compared with non-smokers had high SCE levels (10.59$\pm$0.21 versus 9.23$\pm$0.17 SCE/lymphocytes ; p<0.05). No significant relationships were observed between SCEs and age in smokers and non-smokers. In smokers, SCEs were negatively correlated with egg frequency score(r=-0.336) and total food frequency scores(r=-0.283). In non-smokers, SCEs were positively correlated with white vegetable frequency score(r=0.333) and instant food frequency score(r=0.382). There was a positive association between SCEs and the history of coffee intake of smokers(r=0.318). SCE frequency was not influenced by any other dietary factors considered ; dietary diversity and quality scores, alcohol consumption, use of processed foods and intake of burned food. No significant relationships were found between SCEs and serum cholesterol or other hematological parameters of the subjects. These results indicate that increased egg frequency score, total food frequency score which reflects dietary quality, and decreased coffee intake may reduce cancer risk by preventing smoking-induced DNA damage as reflected by sister chromatid exchanges in human lymphocytes.

  • PDF