• Title/Summary/Keyword: Damage parameters

Search Result 1,537, Processing Time 0.028 seconds

Corrosion Characteristics of 16Cr-10Ni-2Mo Stainless Steel with Plasma Ion Nitriding Temperatures by Galvanostatic Experiment (16Cr-10Ni-2Mo 스테인리스강의 정전류 실험에 의한 플라즈마 이온질화 온도 변수에 따른 부식 특성)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • The aim of this paper is to investigate the characteristics of electrochemical corrosion with the plasma ion nitriding temperature for 16Cr-10Ni-2Mo stainless steel. The corrosion behavior was analyzed by means of galvanostatic experiment in natural seawater that applied various current density with plasma ion nitriding temperature parameters. In result of galvanostatic experiment, relatively less surface damage morphology and the less damage depth was observed at a nitrided temperature of $450^{\circ}C$ that measured the thickest nitrided layer(S-phase). On the other hand, the most damage depth and unified corrosion behavior presented at a temperature of $500^{\circ}C$.

Seismic Damage Assessment on Structures using Measured Acceleration (측정가속도를 이용한 구조물의 지진손상평가)

  • 오성호;신수봉
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.216-223
    • /
    • 2003
  • A time-domain system identification (SI) method is developed for seismic damage assessment on structures. SI algorithms for complete measurements with respect to degrees-of-freedom are proposed. To take account of nonlinear dynamic response, an equation error in the incremental dynamic governing equation is defined for complete measurement between measured and computed acceleration. Variations of stiffness and damping parameters during earthquake vibration are chased by utilizing a constrained nonlinear optimization tool available in MATLAB. A simulation study has been carried out to identify damage event and to assess damage severity by using measured acceleration time history. Mass properties are assumed as known a priori. The effects of measurement noise on the identification are also investigated.

  • PDF

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.

Control of Blast Vibration, Air Blast, and Fly Rock in Rock Excavation (암반굴착에 의한 발파진동, 소음 및 비석의 조절)

  • Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.102-115
    • /
    • 1992
  • Blasting operations associated with rock excavation work may have an environmental impact in nearby structures or human beings. With the increase of construction work in urban areas, vibration problems and complaints have also increased. In order to determine the optimum design parameters for safe blast, it is essential to understand blast mechanism, design variables involved in blast-induced damage, and their effects on the blasting results. This paper deals with the characteristics of ground vibrations, air blast and fly rock caused by blast, including the general method of establishing the vibration predictors, and damage criteria suggested by various investigators. The results of field measurements from open pit mine and tunnel construction work are discussed. Basic concepts of how to design blast parameters to control the generation of ground vibrations, air blast and fly rock are presented.

  • PDF

Nondestructive Evaluation on Hydrogen Effect of TIG Welded Stainless Steel for Component Design of Pressure Vessel

  • Lee, Jin-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.102-107
    • /
    • 2017
  • A tungsten inert gas (TIG) welding method was used for the bonding of stainless steel. TIG welding using inert gas (He or Ar gas) is a method to prevent oxidation and nitriding of materials and to combine non-ferrous metals. This method has the advantage of obtaining a smooth weld surface. In this study, the welding characteristics of 304 stainless steel welded by TIG welding method were analyzed by using nondestructive technique. Ultrasonic and Acoustic Emission (AE) was applied to evaluate the micro-damage of TIG welded 304 stainless steel. The velocity and damping coefficient of ultrasonic wave showed a slight difference in HAZ, which is the welding part of stainless steel. The AE parameters of average frequency, rise time and event were analyzed for the dynamic behavior of stainless steel during loading. Optimal AE parameters for evaluating the degree of damage to the specimen have been derived. Fractograph and metal structures of 304 stainless steel using SEM and optical microscope were discussed.

Identification of nonlinear systems through statistical analysis of the dynamic response

  • Breccolotti, Marco;Pozzuoli, Chiara
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.195-213
    • /
    • 2020
  • In this paper an extension to the method for the identification of mechanical parameters of nonlinear systems proposed in Breccolotti and Materazzi (2007) for MDoF systems is presented. It can be used for damage identification purposes when damage modifies the linear characteristics of the investigated structure. It is based on the following two main features: the solution of the Fokker-Planck equation that describes the response probabilistic properties of the system when it is excited by external Gaussian loads; and a model updating technique that minimizes the differences between the response of the actual system and that of a parametric system used to identify the unknown parameters. Numerical analysis, that simulate virtual experimental tests, are used in the paper to show the capabilities of the method and to analyse the conditions required for its application.

Analysis of the lightning characteristics by the LPATS in KOREA (낙뢰위치 표정시스템(LPATS)에 의한 2004넌 한반도 낙뢰통계 분석결과)

  • Kwak, J.S.;Woo, J.W.;Kweon, D.J.;Kang, Y.W.;Moon, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.606-608
    • /
    • 2005
  • As the overhead transmission lines are exposed to the outdoor weather, the causes of the transmission lines faults are from natural conditions, and among these faults, the outage rate due to lightning is more than 60%. The lightning causes the damage of power system equipments, the shut down of electricity and the electro-magnetic interference. Therefore, the pertinent insulation design is important, not only to decrease the damage of the facility itself but also to increase the reliability of electric power system. For these reasons, we have to obtain and accumulate the lightning current parameters for the basic lightning research. This paper describes the statistical distribution of lightning current parameters and the IKL map.

  • PDF

Analysis of the lightning characteristics by the Lightning DB in KOREA (낙뢰위치표정시스템의 낙뢰 DB를 이용한 한반도 뇌격 특이특성 분석)

  • Woo, J.W.;Kwak, J.S.;Shim, E.B.;Lee, G.W.;Kim, K.W.;Kim, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1658-1660
    • /
    • 2001
  • Because the overhead transmission lines are exposed to the outdoor weather, the faults of the transmission lines are due to natural conditions, and among these faults, the outage rate by lightning is about 50%. The lightning causes the damage of power system equipments, the shut down of electricity and the electro-magnetic interference. Therefore, the pertinent insulation design is important, not only to decrease the damage of the facility itself but also to increase the reliability of electric power system. For these reasons, we have to obtain and accumulate the lightning current parameters for the basic lightning research. This paper describes the statistical distribution of lightning current parameters and the IKL map.

  • PDF

Time domain identification of multiple cracks in a beam

  • He, Z.Y.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.773-789
    • /
    • 2010
  • It is well known that the analytical vibration characteristic of a cracked beam depends largely on the crack model. In the forward analysis, an improved and simplified approach in modeling discrete open cracks in beams is presented. The effective length of the crack zone on both sides of a crack with stiffness reduction is formulated in terms of the crack depth. Both free and forced vibrations of cracked beams are studied in this paper and the results from the proposed modified crack model and other existing models are compared. The modified crack model gives very accurate predictions in the modal frequencies and time responses of the beams particularly with overlaps in the effective lengths with reduced stiffness. In the inverse analysis, the response sensitivity with respect to damage parameters (the location and depth of crack, etc.) is derived. And the dynamic response sensitivity is used to update the damage parameters. The identified results from both numerical simulations and experiment work illustrate the effectiveness of the proposed method.

The Points of Issue and Countermeasure for Sediment Control Dam Designs (사방댐 설계방법의 문제점과 그 대책)

  • Kim, Woon-Hyung;Song, Byung-Woong;Kim, Burm-Suck;Kim, Ju-Han;Lee, Kyung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1057-1064
    • /
    • 2009
  • Since the global warming causes debris flow damage has increased in Kangwon Area, Sediment control dam have increasingly founded to protect the damage. In spite of the realities design methods are well not established to determine type of the dam, design parameters and maintenance. Through comparison for design methods to sediment control dam in Korea, it raised some points to improve to correspond with realities. In addition, it pointed that some issues for the sediment control dams in Kangwon Area. Those are shown that unclear positions of the dams, unremoval of sediment, occurrence of seepage under the dams and uninstallation of roads to remove sediment. In addition, the countermeasure for the issues are proposed.

  • PDF