• Title/Summary/Keyword: Damage occurrence

Search Result 951, Processing Time 0.026 seconds

Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake (사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Sun-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • It is important to calculate the natural frequency of a piled structure in the design stage in order to prevent resonance-induced damage to the pile foundation and analyze the dynamic behavior of the piled structure during an earthquake. In this paper, a simple but relatively accurate method employing a mass-spring model is presented for the evaluation of the natural frequency of a pile-soil system. Greatly influencing the calculation of the natural frequency of a piled structure, the spring stiffness between a pile and soil was evaluated by using the coefficient of subgrade reaction, the p-y curve, and the subsoil elastic modulus. The resulting natural frequencies were compared with those of 1-g shaking table tests. The comparison showed that the natural frequency of the pile-soil system could be most accurately calculated by constructing a stiffness matrix with the spring stiffness of the Reese (1974) method, which utilizes the coefficient of the subgrade reaction modulus, and Yang's (2009) dynamic p-y backbone curve method. The calculated natural frequencies were within 5% error compared with those of the shaking table tests for the pile system in dry dense sand deposits and 5% to 40% error for the pile system in saturated sand deposits depending on the occurrence of excess pore water pressure in the soil.

Analysis of Internal Temperature Change according to the Application of Thermal Insulation Paint and Heat Pump in Broilers (육계사의 차열 페인트 및 히트펌프 적용에 따른 내부 기온 변화 분석)

  • Jun-Seop Mun;Rack-Woo Kim;Seung-Hun Lee;Sang Min Lee;Sang Kyu Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • Heat stress causes a decrease in immunity and disease occurrence in livestock, increasing mortality and impairing productivity. In particular, chickens are very vulnerable to high temperatures compared to other livestock species because their entire body is covered with feathers and sweat glands are not developed. Currently, air conditioning systems are essential in broiler houses to prevent high-air temperature damage to broilers, but conventional cooling facilities are greatly affected by the external environment, so there are limits to their use. In this study, to propose a cooling method, thermal insulation paint and a heat pump were apply in the broiler houses to evaluate the temperature reduction effect. The heat pump experiment was to analyze the cooling effect according to the change in ventilation rate and propose an appropriate. As a result of the experiment, the heat-insulating paint reduced the temperature of the broiler houses by maximum 1-2℃, and in the broiler houses where the heat pump was operated, the temperature decrease was the largest when the ventilation rate was the lowest. When the air temperature in the house is similar to or lower than the outside air temperature, it is considered to be most effective to use a heat pump while maintaining only the minimum ventilation rate.

Spatial analysis of water shortage areas considering spatial clustering characteristics in the Han River basin (공간군집특성을 고려한 한강 유역 물부족 지역 분석)

  • Lee, Dong Jin;Son, Ho-Jun;Yoo, Jiyoung;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.325-336
    • /
    • 2023
  • In August 2022, even though flood damage occurred in the metropolitan area due to heavy rain, drought warnings were issued in Jeolla province, which indicates that the regional drought is intensified recent years. To cope with regarding intensified regional droughts, many studies have been conducted to identify spatial patterns of the occurrence of meteorological drought, however, case studies of spatial clustering for water shortage are not sufficient. In this study, using the estimations of water shortage in the Han River Basin in 2030 of the Master Plans for National Water Management, the spatial characteristics of water shortage were analyzed to identify the hotspot areas based on the Local Moran's I and Getis-Ord Gi*, which are representative indicators of spatial clustering analysis. The spatial characteristics of water shortage areas were verified based on the p-value and the Moran scatter plot. The overall results of for three anayisis periods (S0(1967-1983), S1(1984-2000), S2(2001-2018)) indicated that the lower Imjin River (#1023) was the hotspot for water shortage, and there are moving patterns of water shortage from the east of lower Imjin River (#1023) to the west during S2 compared to S0 and S1. In addition, the Yangyang-namdaecheon (#1301) was the HL area that is adjacent to a high water shortage area and a low water shortage area, and had water shortage pattern in S2 compared to S0 and S1.

Flood Risk Mapping with FLUMEN model Application (FLUMEN 모형을 적용한 홍수위험지도의 작성)

  • Cho, Wan Hee;Han, Kun Yeun;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.169-177
    • /
    • 2010
  • Recently due to the typhoon and extreme rainfall induced by abnormal weather and climate change, the probability of severe damage to human life and property is rapidly increasing. Thus it is necessary to create adequate and reliable flood risk map in preparation for those natural disasters. The study area is Seo-gu in Daegu which is located near Geumho river, one of the tributaries of Nakdong river. Inundation depth and velocity at each time were calculated by applying FLUMEN model to the target area of interest, Seo-gu in Daegu. And the research of creating flood risk map was conducted according to the Downstream Hazard Classification Guidelines of USBR. The 2-dimensional inundation analysis for channels and protected lowland with FLUMEN model was carried out with the basic assumption that there's no levee failure against 100 year precipatation and inflow comes only through the overflowing to the protected lowland. The occurrence of overflowing was identified at the levee of Bisan-dong located in Geumho watershed. The level of risk was displayed for house/building residents, drivers and pedestrians using information about depth and velocity of each node computed from the inundation analysis. Once inundation depth map and flood risk map for each region is created with this research method, emergency action guidelines for residents can be systemized and it would be very useful in establishing specified emergency evacuation plans in case of levee failure and overflowing resulting from a flood.

Screening of Pyrus Species Resistant to Pear Psylla (Cacopsylla pyricola) (꼬마배나무이 (Cacopsylla pyricola) 저항성 배 육종재료 탐색)

  • Shin, Il Sheob;Kim, Dong Soon;Hong, Seong Sik;Kim, Jeong Hee;Cho, Kang Hee;Kim, Se Hee;Kim, Hyun Ran;Kim, Dae Hyun;Hong, Se Jin;Hwang, Jeong Hwan;Hwang, Hae Sung
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.491-496
    • /
    • 2011
  • Breeding for pear resistance to pear psylla (Cacopsylla pyricola) is one of important objective of the National Institute of Horticultural and Herbal Science breeding program. One hundred thirty three accessions from 15 Asian, Chinese and European pear species were investigated for their resistance against pear psylla. The pear psylla resistance was determined based on the following four characteristics: overwintering adult population, the number of eggs and nymphs, and the degree of soot. The different pear species showed varied resistance to pear psylla. Pyrus calleryana and P. betulaefolia indicated the highest antixenosis as ovipositional preference and antibiosis as nymphal feeding and were the most resistant genetic resources. Likewise the European pears (P. communis), 'Conference' and 'Cascade', exhibited little occurrence and damage by pear psylla. These were proved to be promising genetic materials for breeding resistant cultivars because they had good fruit quality and showed resistance to pear paylla. The observed population of overwintering adult, the number of eggs and nymphs of psylla had significant correlation each other.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

Powdery Mildew Resistance Phenotype Test & Genotype Test in C. moschata

  • Jong-Gyu Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.290-290
    • /
    • 2022
  • Powdery mildew is known to be one of the serious diseases in C. moschata cultivation. Plants infected with powdery mildew cause damage to cultivation areas such as occurrence of deformity fruit and decrease in quantity. also, it has been reported that many farms have difficulties in controlling powdery mildew due to the outbreak under various conditions throughout the year. Therefore, this study intends to perform a phenotype test and a genotype test for C. moschata 60 lines grown in Jenong S&T. Podospareaxanthii, known as a pathogen that causes powder mildew disease in pumpkins in Korea, was collected and used as an inoculation source, phenotype test was performed by examining the infection area rate(%) of powdery mildew disease that occurred in leaves 25 days after inoculation. It was determined that 0% of the infection area rate was in the first stage, 1 to 5% in the second stage, 6 to 15% in the third stage, 16 to 30% in the fourth stage, and 31% or more in the fifth stage, The first and second stages were judged as resistance, the third as moderate resistance, and the fourth and fifth stages as sensitivity. As a result of the phenotype test, it was confirmed that the resistance was 21 points, moderate resistance was 14 points, and sensitivity was 25 points. After searching for the genes related to powdery mildew resistance resistance, pm-0, CmbHLH87, and LOC111453072, 21 points of resistance and 9 points of moderate resistance identified through phenotype tests were identified through gel electrophoresis after polymerase chain reaction(PCR) using 5 primers related to 3 genes. As a result of genotype testing of a total 30 points, the CmbHLH87 and LOC111453072 gene were found to be resistant bands in all points, PMR1 was identified as 20 points for resistance, 4 points for moderate resistance, and 6 points for sensitivity, PMR2 was not identified in the entire band, and PMR5 was identified as 18 point for resistance, 3 points for moderate resistance, and 9 points for sensitivity. As a result, when comparing the phenotype test results and genotype test results, CmbHLH87 and LOC111453072 genes was 100% consistent in resistance and moderate resistance, PMR1 was 95.2% in resistance, 44.4% in moderate resistance, and PMR5 was 90% in resistance and 33.3% in moderate resistance, PMR2 was not consistent in resistance and moderate resistance. Therefore, it is expected that more accurate PMR test will be possible by using molecular markers(PMR1, PMR5) and by developing CmbHLH87 and LOC111453072 gene-related molecular markers.

  • PDF

Assessing the Climatic Suitability for the Drywood Termite, Cryptotermes domesticus Haviland (Blattodea: Kalotermitidae), in South Korea (마른나무흰개미(가칭)의 국내 기후적합성 평가)

  • Min-Jung Kim;Jun-Gi Lee;Youngwoo Nam ;Yonghwan Park
    • Korean journal of applied entomology
    • /
    • v.62 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • A recent discovery of drywood termites (Cryptotermes domesticus) in a residential facility in Seoul has raised significant concern. This exotic insect species, which can damage timber and wooden buildings, necessitates an immediate investigation of potential infestation. In this study, we assessed the climatic suitability for this termite species using a species distribution modeling approach. Global distribution data and bioclimatic variables were compiled from published sources, and predictive models for climatic suitability were developed using four modeling algorithms. An ensemble prediction was made based on the mean occurrence probability derived from the individual models. The final model suggested that this species could potentially establish itself in tropical coastal regions. While the climatic suitability in South Korea was generally found to be low, a careful investigation is still warranted due to the potential risk of colonization and establishment of this species.

Implementation of an Automated Agricultural Frost Observation System (AAFOS) (농업서리 자동관측 시스템(AAFOS)의 구현)

  • Kyu Rang Kim;Eunsu Jo;Myeong Su Ko;Jung Hyuk Kang;Yunjae Hwang;Yong Hee Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.63-74
    • /
    • 2024
  • In agriculture, frost can be devastating, which is why observation and forecasting are so important. According to a recent report analyzing frost observation data from the Korea Meteorological Administration, despite global warming due to climate change, the late frost date in spring has not been accelerated, and the frequency of frost has not decreased. Therefore, it is important to automate and continuously operate frost observation in risk areas to prevent agricultural frost damage. In the existing frost observation using leaf wetness sensors, there is a problem that the reference voltage value fluctuates over a long period of time due to contamination of the observation sensor or changes in the humidity of the surrounding environment. In this study, a datalogger program was implemented to automatically solve these problems. The established frost observation system can stably and automatically accumulate time-resolved observation data over a long period of time. This data can be utilized in the future for the development of frost diagnosis models using machine learning methods and the production of frost occurrence prediction information for surrounding areas.

Bayesian Network-based Probabilistic Safety Assessment for Multi-Hazard of Earthquake-Induced Fire and Explosion (베이지안 네트워크를 이용한 지진 유발 화재・폭발 복합재해 확률론적 안전성 평가)

  • Se-Hyeok Lee;Uichan Seok;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.205-216
    • /
    • 2024
  • Recently, seismic Probabilistic Safety Assessment (PSA) methods have been developed for process plants, such as gas plants, oil refineries, and chemical plants. The framework originated from the PSA of nuclear power plants, which aims to assess the risk of reactor core damage. The original PSA method was modified to adopt the characteristics of a process plant whose purpose is continuous operation without shutdown. Therefore, a fault tree, whose top event is shut down, was constructed and transformed into a Bayesian Network (BN), a probabilistic graph model, for efficient risk-informed decision-making. In this research, the fault tree-based BN from the previous research is further developed to consider the multi-hazard of earthquake-induced fire and explosion (EQ-induced F&E). For this purpose, an event tree describing the occurrence of fire and explosion from a release is first constructed and transformed into a BN. And then, this BN is connected to the previous BN model developed for seismic PSA. A virtual plot plan of a gas plant is introduced as a basis for the construction of the specific EQ-induced F&E BN to test the proposed BN framework. The paper demonstrates the method through two examples of risk-informed decision-making. In particular, the second example verifies how the proposed method can establish a repair and retrofit strategy when a shutdown occurs in a process plant.