• Title/Summary/Keyword: Damage investigation

Search Result 1,094, Processing Time 0.03 seconds

Commucation line electric power induction and searching examination of an animal damage around rapid-transit railway (고속철도 주변 통신선로 전력유도 및 동물피해 원인규명)

  • Yeo, Sang-Kun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.91-96
    • /
    • 2006
  • This paper shows quantatively the cause of electric power induction that was occured by flowing current when high speed electric car travels and the investigation of earth potential upswing and animal damage example by rail leakage current.

  • PDF

Marine Accident Cause Investigation using M&S System (고도 정밀 M&S 시스템을 이용한 해난사고 원인규명)

  • Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.36-37
    • /
    • 2014
  • It is necessary to develop highly sophisticated Modeling & Simulation (M&S) system for the scientific investigation of marine accident causes and for the systematic reproduction of accidental damage procedure. To ensure an accurate and reasonable prediction of marine accidental causes, such as collision, grounding and flooding, full-scale ship M&S simulations would be the best approach using hydrocode, such as LS-DYNA code, with its Fluid-Structure Interaction (FSI) analysis technique. The objectivity of this paper is to present three full-scale ship collision, grounding and flooding simulation results of marine accidents, and to show the possibility of the scientific investigation of marine accident causes using highly sophisticated M&S system.

  • PDF

Forensic Engineering Study on the Explosion Accident Investigation of the Centrifugal Casting Machine Using ADINA FSI (ADINA FSI를 활용한 원심주조기 폭발사고 원인 규명에 관한 법공학적 연구)

  • Kim, Eui-Soo;Kim, Jong-Hyuk;Kim, Moo-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.27-33
    • /
    • 2011
  • Forensic Engineering is the area covering the investigation of products, structures that fail to perform or do not function as intended, causing personal injury or damage to property. To investigate explosion accident of the centrifugal casting machine in terms of the forensic engineering, in this paper, the computing simulation using ADINA FSI has performed to investigate that the effect of the Check-Pin fracture by the flow phenomena and molten metal weight and the mechanical properties test of the accident Check-Pin has performed using the instrumented indentation technique. Through these studies, the safety accident that may occur in centrifugal casting machine can be minimized by performing specialized and systematic investigation of the accident cause in terms of the forensic engineering.

An Experimental Study on the Ultimate Longitudinal Strength of Ship Structures Damaged due to Side Collision (충돌 손상된 선체구조의 최종 종강도에 관한 실험적 연구)

  • Lee, Tak-Kee;Rim, Chae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.85-90
    • /
    • 2008
  • Ships in bad weather conditions are likely to be subjected to accidental loads, such as high bending moment, collision, and grounding. Once she has damage to her hull, her ultimate strength will be reduced. This paper discusses an investigation of the effect of collision damage on the ultimate strength of a ship structure by performing a series of collapse tests. For the experiment, five box-girder models with stiffeners were prepared with a cross section of $720mm\;{\times}\;720mm$ and a length of 900mm. Of the five, one had no damage and four had an ellipse shaped damage area that represented the shape of the bulbous bow of a colliding ship. The amount of damage size was different between models. Among the damaged models, the damage in three of them was made by cutting the plate and stiffener, and in one by pressing to represent collision damage. Experiments were carried out under a pure bending load and the applied load and displacements were recorded. The ultimate strength was reduced as the damage size increased, as expected. The one with the largest amount of damage had damage to 30% of the depth, and its ultimate strength was reduced by 19% compared to the undamaged one. The pressed one has higher ultimate strength than those that were cut. This might be due to the fact that the plate around the pressed damage area contributes to the ultimate strength, whereas the cut one has no plate to contribute.

Diagnosis and Evaluation of Conservation State of Mural Paintings in Payathonzu Temple on Bagan Heritage Site in Myanmar

  • Lee, Hwa Soo;Kim, Seol Hui;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.494-507
    • /
    • 2019
  • A diagnostic investigation of the conservation state of damaged murals of the Payathonzu temple mainly indicated delamination, exfoliation, and contamination of the coloring layer; cracks and damage to the wall; and separation from gaps. In particular, vulnerabilities resulting from cracks in the wall and damage from gaps demand swift reinforcement measures. Ultrasonic testing uncovered damage caused by gaps between the base layer and plastered wall in several areas of the mural, vulnerable parts in the wall around the cracks, and considerable degradation of the physical properties where cracks and gaps were severe. Moisture measurements identified vast disparities in moisture depending on location even within a single area of the mural, and it was clear that these disparities were the result of environmental conditions such as humidity. Damage to the murals in monument 477 was the most severe, and a diagnostic of the physical properties uncovered severe physical damage to the upper part of the mural as well as to the corridor ceiling, thus presenting the need for conservation treatment utilizing scientific diagnosis as well as objective data.

Finite element investigation of the joints in precast concrete pavement

  • Sadeghi, Vahid;Hesami, Saeid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.547-557
    • /
    • 2018
  • This paper measures the mechanical response of precast pavement joints under moving axle loads using the finite-element method, and the models were validated with results of field tests. In order to increase the ability to use the non-linear FE analysis for design and assessment of precast pavement subjected to moving axle load, this paper investigated the effects of different load transfer between the slabs using the ABAQUS finite-element package to solve the nonlinear explicit model equations. The assembly of the panels using dowels and groove-tongue keys has been studied to assess the efficiency of keyway joint system. Concrete damage plasticity model was used to calculate the effects of permanent damages related to the failure mechanisms. With aggregate interlock as the only load transferring system, Load transfer efficiency (LTE) is not acceptable when the axle load reaches to slab joints. The Finite-element modelling (FEM) results showed that keyway joints significantly reduced tensile stresses developed at the mid-slab. Increasing the thickness of the tongue the LTE was improved but with increasing the height of the tongue the LTE was decreased. Stresses are transferred to the adjacent slab efficiently when dowels are embedded within the model. When the axle load approaches joints, tensile damage occurs sooner than compressive damage, but the damage rate remains constant, then compressive damage increases significantly and become the major form of distress under the dowels.

A Feasibility Study on the Application of the Topology Optimization Method for Structural Damage Identification (구조물의 결함 규명을 위한 위상최적설계 기법의 적용가능성 연구)

  • Lee, Joong-Seok;Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.115-123
    • /
    • 2006
  • A feasibility of using the topology optimization method for structural damage identification is investigated for the first time. The frequency response functions (FRFs) are assumed to be constructed by the finite element models of damaged and undamaged structures. In addition to commonly used resonances, antiresonances are employed as the damage identifying modal parameters. For the topology optimization formulation, the modal parameters of the undamaged structure are made to approach those of the damaged structure by means of the constraint equations, while the objective function is an explicit penalty function requiring clear black-and-white images. The developed formulation is especially suitable for damage identification problems dealing with many modal parameters. Although relatively simple numerical problems were considered in this investigation, the possibility of using the topology optimization method for structural damage identification is suggested through this research.

Experimental deployment and validation of a distributed SHM system using wireless sensor networks

  • Castaneda, Nestor E.;Dyke, Shirley;Lu, Chenyang;Sun, Fei;Hackmann, Greg
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.787-809
    • /
    • 2009
  • Recent interest in the use of wireless sensor networks for structural health monitoring (SHM) is mainly due to their low implementation costs and potential to measure the responses of a structure at unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing must be developed in parallel with this technology to significantly reduce the power consumption and communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection system based on a distributed processing approach is proposed and experimentally validated using a wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board processing capabilities of the wireless sensor are exploited to significantly reduce the communication load and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted to the base station for decision-making. The results indicate that this distributed implementation can be used to successfully detect and localize regions of damage in a structure. To further support the experimental results obtained, the capabilities of the proposed system were tested through a series of numerical simulations with an expanded set of damage scenarios.

Assessments of Installation Damage and Creep Deformation of Geogrids (지오그리드의 시공시 손상 및 크리프 변형 특성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong;Lee, Do-Hee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.29-40
    • /
    • 2004
  • The factors affecting the long-term design strength of geogrids can be classified into factors on creep deformation, installation damage, temperature, chemical degradation, biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrids. This paper describes the results of a series of experimental investigation, which were conducted to assess the installation damage according to different fill materials and creep characteristic of various geogrids. The results of this study show that the installation damage and creep deformation of geogrids significantly depends on a row material and a manufacturing process of geogrids.

  • PDF

Damage evaluation of RC beams strengthened with hybrid fibers

  • Sridhar, Radhika;Prasad, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.9-19
    • /
    • 2019
  • This paper describes an experimental investigation on hybrid fiber reinforced concrete (HYFRC) beams. And the main aim of this present paper is to examine the dynamic characteristics and damage evaluation of undamaged and damaged HYFRC beams under free-free constraints. In this experimental work, totally four RC beams were cast and analyzed in order to evaluate the dynamic behavior as well as static load behavior of HYFRCs. Hybrid fiber reinforced concrete beams have been cast by incorporating two different fibers such as steel and polypropylene (PP). Damage of HYFRC beams was obtained by cracking of concrete for one of the beams in each set under four-point bending tests with different percentage variation of damage levels as 50%, 70% and 90% of maximum ultimate load. And the main dynamic characteristics such as damping, fundamental natural frequencies, mode shapes and frequency response function at each and every damage level has been assessed by means of non-destructive technique (NDT) with hammer excitation. The fundamental natural frequency and damping values obtained through dynamic tests for HYFRC beams were compared with control (reference) RC beam at each level of damage which has been acquired through static tests. The static experimental test results emphasize that the HYFRC beam has attained higher ultimate load as compared with control reinforced concrete beam.