• Title/Summary/Keyword: Damage indicator

Search Result 221, Processing Time 0.023 seconds

A Study for The Comparison of Structural Damage Detection Method Using Structural Dynamic Characteristic Parameters (구조 동특성 파라미터를 이용한 구조물 손상 탐색기법 비교 연구)

  • Choi, Byoung-Min;Woo, Ho-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.257-263
    • /
    • 2007
  • Detection of structural damage is an inverse problem in structural engineering. There are three main questions in the damage detection: existence, location and extent of the damage. In concept, the natural frequency and mode shapes of any structure must satisfy an eigenvalue problem. But, if a potential damage exists in a structure, an error resulting from the substitution of the refined analytical finite element model and measured modal data into the structural eigenvalue equation will occur, which is called the residual modal forces, and can be used as an indicator of potential damage in a structure. In this study, a useful damage detection method is proposed and compared with other two methods. Two degree-of-freedom system and Cantilever beam are used to demonstrate the approach. And the results of three introduced method are compared.

PZT Impedance-based Damage Detection for Civil Infrastructures (토목 구조물의 PZT Impedance 기반 손상추정기법)

  • S. H. Park;Y. Roh;C. B. Yun;J. H. Yi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.373-380
    • /
    • 2004
  • This paper presents the feasibility of an impedance-based damage detection technique using piezoelectric (PZT) transducers for civil infrastructures such as steel bridges. The impedance-based damage detection method is based on monitoring the changes in the electrical impedance. Those changes in the electrical impedance are due to the electro-mechanical coupling property of the piezoelectric material and structure. An effective integrated structural health monitoring system must include a statistical process of damage detection that is automated and real time assessment of damage in the structure. Once measured, damage sensitive features from this impedance change can be statistically quantified for various damage cases. The results of the experimental study on three kinds of structural members show that cracks or loosened bolts/nuts near the PZT sensors may be effectively detected by monitoring the shifts of the resonant frequencies. The root mean square (RMS) deviations of impedance functions between before and after damages were also considered as a damage indicator. The subsequent statistical methods using the impedance signature of the PZT sensors were investigated.

  • PDF

Reliability Assessment of Temperature Indicator for Simplified Measurement on Conservation Environment of Cultural Heritage (문화재 보존환경 간이 측정을 위한 온도지시카드 신뢰성 평가)

  • Lim, Bo-A;Shin, Eun-Jeong;Lee, Sun-Myung
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.59-68
    • /
    • 2010
  • Cultural heritages are damaged by surrounding several environmental factors. Main factors are temperature, humidity, light, atmosphere and indoor pollutant, organism, etc. Therefore, to prevent damage of cultural heritage from such environmental factor, conservation environment monitoring becomes more important. Indicator is one of the simple method for environment monitoring. It can be used without expensive and complex equipments. However, it should be performed scientific examination for application to cultural heritage. In this study, some Temperature Indicators were chosen and reliability assessment was carried out for application to cultural heritage. Brightness($L^*$) is selected for reliability assessment factor. As a result of lab test, Temperature Indicators were not influenced greatly in humidity change. When they were exposed to setting temperature, the color was changed in setting temperature area and ${\pm}2^{\circ}C$ part of setting temperature. Especially brightness value was high in setting temperature area. Also, Temperature Indicators were stabilized after about 16 minutes when were exposed to temperature difference of $10^{\circ}C$ and when temperature difference with exposure environment is smaller, stabilization time shortened. Therefore, it is a possible to confirm that selected Temperature Indicator is reliable product through measurement of color difference value and naked eye observation.

  • PDF

A study on the Delayed Muscle Soreness after Exercise and the Indicators of Muscle Damage (운동 후 지연된 근통종과 근손상의 지표에 관한 연구)

  • Cho Keun-Jong;Choi Jae-Cheong
    • The Journal of Korean Physical Therapy
    • /
    • v.10 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • The purpose of this study was to analyze the delayed muscle soreness after exercise and the indicators of muscle damage. Subjects of this study were 9 male students. Some muscle enzymes and others(GOT, LDH, ALD, CPK in serum, WBC, ESR) that known as the indicators of muscle damage were measured before exercise. After measurements they run on a treadmill ($incline:25\%$, speed;3.5miles/h) for 7 min. on an average. The intensity of this kind of exercise was $90.5\%$ of maximal exercise intensity. After exercise, same indicators were measured at the just after exercise, 24hr after, 48hr after, 72hr after. Also muscle soreness level was evaluated at same intervals by make use of Modified Abraham's scale. The result was as follow: There was no relationships between muscle soreness and the indicators of muscle damage but ALD was the most important indicator that can be explains the muscle soreness very well.

  • PDF

Fatigue Life Prediction of Stainless Steel Using Acoustic Emission (음향방출법을 이용한 스테인레스강 피로수명 예측)

  • Kim, Y.H.;Jung, C.K.;Yang, Y.C.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.193-198
    • /
    • 2001
  • The feasibility of the acoustic emission technique in predicting the residual fatigue life of STS304 stainless steel is presented. Acoustic emission was continuously monitored during the fatigue tests. Considerable acoustic emission occurred during the first few cycles. Acoustic Emission increased rapidly at about 90% of the fatigue life, clear and ample warning of impending fatigue failure was observed. Fatigue damage accumulation was evaluated in terms of an AE cumulative counts. The AE cumulative counts may be taken as an indicator of fatigue cumulative damage. Fatigue damages corresponding to 20, 40, 60 and 80% of the total life were induced at a cyclic stress amplitude. The specimens with and without fatigue damage were subjected to tensile tests. In tensile tests, the total cumulative counts were reduced with increasing fatigue damage. It was observed that the residual tensile strength of material did not change significantly with prior cyclic loading damages.

  • PDF

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Damage detection for beam structures using an angle-between-string-and-horizon flexibility matrix

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.643-667
    • /
    • 2010
  • The classical flexibility difference method detects damage by observing the difference of conventional deflection flexibility matrices between pre- and post-damaged states of a structure. This method is not able to identify multiple damage scenarios, and its criteria to identify damage depend upon the boundary conditions of structures. The key point behind the inability and dependence is revealed in this study. A more feasible flexibility for damage detection, the Angle-between-String-and-Horizon (ASH) flexibility, is proposed. The physical meaning of the new flexibility is given, and synthesis of the new flexibility matrix by modal frequencies and translational mode shapes is formulated. The damage indicators are extracted from the difference of ASH flexibility matrices between the pre- and post-damaged structures. One feature of the ASH flexibility is that the components in the ASH flexibility matrix are associated with elements instead of Nodes or DOFs. Therefore, the damage indicators based on the ASH flexibility are mapped to structural elements directly, and thus they can pinpoint the damaged elements, which is appealing to damage detection for complex structures. In addition, the change in the ASH flexibility caused by damage is not affected by boundary conditions, which simplifies the criteria to identify damage. Moreover, the proposed method can determine relatively the damage severity. Because the proposed damage indicator of an element mainly reflects the deflection change within the element itself, which significantly reduces the influence of the damage in one element on the damage indicators of other damaged elements, the proposed method can identify multiple damage locations. The viability of the proposed approach has been demonstrated by numerical examples and experimental tests on a cantilever beam and a simply supported beam.

Study on the Distribution Characteristics of Storm Damage Area : The Case of Gyeonggi-do (수해지 분포 특성에 관한 연구 : 경기도 사례를 중심으로)

  • Kang, Sangjun;Jung, Juchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.507-517
    • /
    • 2012
  • The main purpose of this study is to address flooding resilient land use management strategy based on the distributional characteristics of storm damage areas in Gyeonggi-do. The employed methods are 1) Exploratory Spatial Data Analysis (ESDA) to understand the spatial patterns of storm damage areas occurred from 2005 to 2009, 2) Local Indicator of Spatial Association (LISA) to examine spatial autocorrelation existed in storm damage areas for the year of 2009. The results show that 1) crop land damage is very sensitive to heavy precipitation, 2) damaged buildings are found in all over the Gyeonggi areas, but relatively more damages are in the regions closed to the City of Seoul, 3) damaged roads-bridges, streams, and reaches are found in mostly rural areas, 4) building and crop land damage occurs mostly in lowlands with different spatial patterns. These findings imply that 1) it will be useful to consider the average distances and slopes of damaged building and crop lands from streams for the decision making of land use management strategy, 2) further management efforts are required in the north, east, and south regions of Gyeonggi areas to prevent roads-bridge, stream, and reach damages, 3) the present land use pattern needs to be carefully investigated by considering the damage clustered areas for the year of 2009 based on watershed and municipality boundaries.

Damage detection through structural intensity and vibration based techniques

  • Petrone, G.;Carzana, A.;Ricci, F.;De Rosa, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.613-637
    • /
    • 2017
  • The development systems for the Structural Health Monitoring has attracted considerable interest from several engineering fields during the last decades and more specifically in the aerospace one. In fact, the introduction of those systems could allow the transition of the maintenance strategy from a scheduled basis to a condition-based approach providing cost benefits for the companies. The research presented in this paper consists of a definition and next comparison of four methods applied to numerical measurements for the extraction of damage features. The first method is based on the determination of the Structural Intensity field at the on-resonance condition in order to acquire information about the dissipation of vibrational energy throughout the structure. The Damage Quantification Indicator and the Average Integrated Global Amplitude Criterion methods need the evaluation of the Frequency Response Function for a healthy plate and a damaged one. The main difference between these two parameters is their mathematical definition and therefore the accuracy of the scalar values provided as output. The fourth and last method is based on the Mode-shape Curvature, a FRF-based technique which requires the application of particular finite-difference schemes for the derivation of the curvature of the plate. All the methods have been assessed for several damage conditions (the shape, the extension and the intensity of the damage) on two test plates: an isotropic (steel) plate and a 4-plies composite plate.