• 제목/요약/키워드: Damage curves

검색결과 407건 처리시간 0.031초

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.

교량의 구조특성에 따른 손상확률과 목표연성도 결정 (Damage Probabilities according to the Structural Characteristics of Bridges and the Determination of Target Ductilities)

  • 선창호;이종석;김익현
    • 한국지진공학회논문집
    • /
    • 제14권3호
    • /
    • pp.1-10
    • /
    • 2010
  • 현행의 내진설계의 성능목표는 인명피해를 최소화하기 위한 구조물의 붕괴방지에 있으며 기존구조물의 내진보강도 이를 만족하도록 수행되고 있다. 그러나, 최근의 해외 지진피해사례를 살펴보면 큰 지진에서도 이러한 내진성능목표는 비교적 잘 달성되었지만 엄청난 경제적 손실이 동반되어 새로운 문제점으로 제기되고 있다. 이러한 큰 경제적 손실을 줄이기 위해서는 현행 붕괴방지성능에서 벗어나 구조물의 손상을 제어할 수 있도록 손상확률에 기반하여 내진성능목표를 설정하는 새로운 내진설계개념이 필요하다. 본 연구에서는 다양한 구조적특성을 지닌 교량을 대상으로 하여 비선형지진해석을 수행하여 지진거동특성을 확인하고, 기준손상도에 대한 취약도곡선을 산정하였다. 이로부터 목표손상확률에 따른 교량구조물의 목표연성도의 특성을 분석하였다.

음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석 (Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • 제14권5호
    • /
    • pp.46-53
    • /
    • 2001
  • 집중하중을 받는 일방향 보강(singly oriented ply, SOP) 섬유 금속 적층판(fiber metal laminate, FML)의 손상 거동을 음향 방출법(acoustic emission, AE)을 이용하여 연구하였다. 섬유 방향의 영향을 연구하기 위하여 다양한 섬유 방향을 가지는 SOP FML을 제작하였으며, UTM을 이용하여 압입 하중을 가하였다. 압입 시험 시 발생하는 AE신호는 150kH의 공진 주파수를 가지는 AE센서를 이용하여 측정하였으며, 여기에서 발생된 신호를 하중-변위 선도와 비교하였다. SOP FML의 손상 과정은 균열 개시, 균열 전파, 관통에 따라 3구간으로 나누어 겼다. 균열 개시전까지의 AE 신호의 특성으로 보아 미소 균열이 시편의 하부에서 발생하고 이 균열이 시편의 두께 방향으로 전파되어 섬유 분리를 발생시키는 것으로 생각된다. 발생된 균열은 섬유 방향을 따라 성장하였으며, 이 때 60~80dB의 AE신호들이 발생되었다. 관통이 발생할 때는 80~100dB의 고진폭의 AE신호가 나타나 섬유의 파괴가 발생함을 보였으며, 섬유의 방향이 증가할수록 섬유의 파괴가 많이 발생되었다 누적 AE count선도는 FML의 압입 특성을 잘 나타내어 FML의 특성 변호 예측에 유용하게 사용될 수 있을 것으로 생각된다.

  • PDF

항만지역의 지반증폭 특성을 반영한 실시간 지진피해 평가방안 수립 (Real-time Seismic Damage Estimation for Harbor Site Considering Ground Motion Amplification Characteristics)

  • 김한샘;유승훈;장인성;정충기
    • 한국지반공학회논문집
    • /
    • 제28권5호
    • /
    • pp.55-65
    • /
    • 2012
  • 본 연구에서는 항만 지역의 지반 조건과 계측된 암반노두 가속도를 이용하여 지반증폭 특성이 반영된 지진피해평가 방안을 구축하였다. 먼저 지반조사 자료를 토대로 부지응답해석을 수행하여 항만지역의 암반노두 가속도와 지표면 최대가속도의 상관관계식을 결정한다. 결정된 대상 항만의 상관관계식은 지진피해평가 시스템 상에 DB화 되고, 지진 발생 시 계측된 암반노두 가속도를 입력받아 실시간으로 지표면 최대가속도를 결정한다. 지진 발생 시 실시간으로 결정되는 PGA 값과 상부 구조물의 지진취약도 함수를 이용하여 항만구조물의 지진피해 등급을 결정할 수 있다. 또한, 본 연구에서는 구축된 평가 방안에 따라 가상 지진을 적용하여 인천항만 지역 내 항만 구조물의 지진 피해를 추정하고 등급화 하였다.

Computational aspects of guided wave based damage localization algorithms in flat anisotropic structures

  • Moll, Jochen;Torres-Arredondo, Miguel Angel;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • 제10권3호
    • /
    • pp.229-251
    • /
    • 2012
  • Guided waves have shown a great potential for structural health monitoring (SHM) applications. In contrast to traditional non-destructive testing (NDT) methodologies, a key element of SHM approaches is the high process of automation. The monitoring system should decide autonomously whether the host structure is intact or not. A basic requirement for the realization of such a system is that the sensors are permanently installed on the host structure. Thus, baseline measurements become available that can be used for diagnostic purposes, i.e., damage detection, localization, etc. This paper contributes to guided wave-based inspection in anisotropic materials for SHM purposes. Therefore, computational strategies are described for both, the solution of the complex equations for wave propagation analysis in composite materials based on exact elasticity theory and the popular global matrix method, as well as the underlying equations of two active damage localization algorithms for anisotropic structures. The result of the global matrix method is an angular and frequency dependent wave velocity characteristic that is used subsequently in the localization procedures. Numerical simulations and experimental investigations through time-delay measurements are carried out in order to validate the proposed theoretical model. An exemplary case study including the calculation of dispersion curves and damage localization is conducted on an exemplary unidirectional composite structure where the ultrasonic signals processed in the localization step are simulated with the spectral element method. The proposed study demonstrates the capabilities of the proposed algorithms for accurate damage localization in anisotropic structures.

A case study of damage detection in four-bays steel structures using the HHT approach

  • Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Liu, Ming-Yi;Chiang, Wei-Ling;Huang, Pei-Chiung
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.595-615
    • /
    • 2014
  • This study aims to investigate the relationship between structural damage and sensitivity indices using the Hilbert-Huang transform (HHT) method. Two damage detection indices are proposed: the ratio of bandwidth (RB), and the ratio of effective stiffness (RES). The nonlinear four bays multiple degree of freedom models with various predominant frequencies are constructed using the SAP2000 program. Adjusted PGA earthquake data (Japan 311, Chi-Chi 921) are used as the excitations. Next the damage detection indices obtained using the HHT and the fast Fourier transform (FFT) methods are evaluated based on the acceleration responses of the structures to earthquakes. Simulation results indicate that, the column of the 1 st floor is the first yielding position and the RB value is changed when the RES<90% in all cases. Moreover, the RB value of the 1 st floor changes more sensitive than those from the top floor. In addition, when the structural response is nonlinear (i.e., RES<100%), the RB and the RES curves indicate the incremental change in the HHT spectra. However, the same phenomenon can be found from FFT spectra only when the stiffness reduction is large enough. Therefore, the RB estimated from the smoothed HHT spectra is an effective and sensitive index for detecting structural damage.

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • 제2권3호
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Development of an integrated approach for Algerian building seismic damage assessment

  • Boukri, Mehdi;Farsi, Mohammed Naboussi;Mebarki, Ahmed;Belazougui, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.471-493
    • /
    • 2013
  • This paper presents a framework for seismic damage evaluation for Algerian buildings adapted from HAZUS approach (Hazard-United States). Capacity and fragility curves were adapted to fit the Algerian building typologies (Reinforced Concrete structures, Confined or Non-Confined Masonry, etc). For prediction purposes, it aims to estimate the damages and potential losses that may be generated by a given earthquake in a prone area or country. Its efficiency is validated by comparing the estimated and observed damages in Boumerd$\grave{e}$s city, in the aftermath of Boumerd$\grave{e}$s earthquake (Algeria: May $21^{st}$ 2003; $M_w$ = 6.8). For this purpose, observed damages reported for almost 3,700 buildings are compared to the theoretical predictions obtained under two distinct modelling of the seismic hazard. In one hand, the site response spectrum is built according to real accelerometric records obtained during the main shock. In the other hand, the effective Algerian seismic code response spectrum (RPA 99) in use by the time of the earthquake is considered; it required the prior fitting of Boumerd$\grave{e}$s site PGA (Peak Ground Acceleration) provided by Ambraseys' attenuation relationship.

가속시험을 통한 불규칙하중을 받는 실구조물의 피로수명평가 (Fatigue Life Evaluation of an Actual Structure under the Irregular Loading using an Acceleration Test)

  • 김형익;배봉국;박재실;석창성;모진용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.166-169
    • /
    • 2004
  • A fatigue test was used to evaluate the fatigue life of an actual structure. The loaded state and the constraint condition of an actual structure must be same as the specimen in order to apply the test results to an actual structure by the specimen. The loaded state and constraint conditions can't be same as the specimen in the actual structure which is complicated. In order to reduce these differences, an actual structure test with a lot of frequencies is need to get a fatigue life curve. Therefore, ten sets of accelerated test units which attached unbalanced mass were composed in this study. Acceleration history about the vibration of an actual structure was acquired. Rainflow counting was used on acceleration history, and the life curve return formula was assumed. The return formula that damage satisfied `1' was acquired in a feedback process by the Miner's rule, which was the linear cumulative damage theory. A conservative fatigue life curve was determined with a return formula to have been presumed by each set. The fatigue life of regular rpm condition was calculated by these conservative fatigue life curves.

  • PDF