• Title/Summary/Keyword: Damage Tolerance

Search Result 315, Processing Time 0.032 seconds

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Chronic Alcohol Consumption Results in Greater Damage to the Pancreas Than to the Liver in the Rats

  • Lee, Seong-Su;Hong, Oak-Kee;Ju, Anes;Kim, Myung-Jun;Kim, Bong-Jo;Kim, Sung-Rae;Kim, Won-Ho;Cho, Nam-Han;Kang, Moo-Il;Kang, Sung-Koo;Kim, Dai-Jin;Yoo, Soon-Jib
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.309-318
    • /
    • 2015
  • Alcohol consumption increases the risk of type 2 diabetes. However, its effects on prediabetes or early diabetes have not been studied. We investigated endoplasmic reticulum (ER) stress in the pancreas and liver resulting from chronic alcohol consumption in the prediabetes and early stages of diabetes. We separated Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a type-2 diabetic animal model, into two groups based on diabetic stage: prediabetes and early diabetes were defined as occurrence between the ages of 11 to 16 weeks and 17 to 22 weeks, respectively. The experimental group received an ethanol-containing liquid diet for 6 weeks. An intraperitoneal glucose tolerance test was conducted after 16 and 22 weeks for the prediabetic and early diabetes groups, respectively. There were no significant differences in body weight between the control and ethanol groups. Fasting and 120-min glucose levels were lower and higher, respectively, in the ethanol group than in the control group. In prediabetes rats, alcohol induced significant expression of ER stress markers in the pancreas; however, alcohol did not affect the liver. In early diabetes rats, alcohol significantly increased most ER stress-marker levels in both the pancreas and liver. These results indicate that chronic alcohol consumption increased the risk of diabetes in prediabetic and early diabetic OLETF rats; the pancreas was more susceptible to damage than was the liver in the early diabetic stages, and the adaptive and proapoptotic pathway of ER stress may play key roles in the development and progression of diabetes affected by chronic alcohol ingestion.

Negative Effect of Abnormal Climate on the Fruits Productivity - Focusing on the Special Weather Report - (이상기후가 과수 생산성에 미치는 악영향 - 기상특보 발효횟수를 중심으로 -)

  • Jeong, Jae Won;Kim, Seongsup;Lee, In Kyu;So, Namho;Ko, Hyeon Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.305-312
    • /
    • 2018
  • The crops cultivated and consumed in Korea require specific climate conditions corresponding to their own growth characteristics. This study aims to analyze the relationship between climate change and agricultural productivity. According to growing concern about climate change internationally, many agricultural studies are developing technology to prevent damage from climate change. Before developing technology, we should figure out what kind of crop gets huge damage and how much caused by climate change. In the context of agricultural economics, we can define the reduction of agricultural product yield as a decline in productivity. As a result, this study analyzes the effects of climate change on agricultural productivity using Stochastic Frontier Analysis model. There are several kinds of climate change phenomena that increase the inefficiency of production. In other words, there are several kinds of crops that get negative influence by climate change. The result of this study can be used as basic guideline for producers to prepare for changing weather prior to developing disaster tolerance technology coping actively with special weather report.

Desalinization Effect of Pennisetum Alopecuroides and Characteristics of Leachate Depending on Calcium Chloride (CaCl2) Concentration

  • Yang, Ji;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.445-453
    • /
    • 2020
  • Background and objective: Calcium chloride (CaCl2) and sodium chloride (NaCl) are commonly used as a deicing agent in South Korea and penetrate the soil on the roadside, causing damage to plants. This study was conducted to investigate the salinity reduction effect of Pennisetum alopecuroides and the chemical characteristics of soil leachate. Methods: The plants were treated with five different concentrations of CaCl2 (0, 1, 2, 5, and 10g·L-1) and were grouped into the Cont., C1, C2, C5, and C10 groups. CaCl2 of 200 m·L-1 was sprayed to each plant once every two weeks. The growth of P. alopecuroides (plant height, leaf length, leaf width and the number of leaves) was measured. The level of EC and pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) in the leachate of soil was monitored. Results: The pH of soil leachate decreased as the CaCl2 concentration increased, and the EC increased significantly. The content of K+ did not change significantly until the concentration of CaCl2 reached 5 g·L-1, but the content of Ca2+, Na+, and Mg2+ significantly increased. The plant height, leaf length, and leaf width of P. alopecuroides showed the highest value in CaCl2 1 g·L-1 followed by CaCl2 2 g·L-1 and the control group. Root fresh weight was the highest in CaCl2 2 g·L-1. On the other hand, there was no change in the shoot fresh weight, dry weight and root dry weight, and P. alopecuroides growth inhibition at the concentration of 5 g·L-1 or higher in the plant height and leaf length. Conclusion: P. alopecuroides is relatively highly salt-tolerant and can improve the salt damaged soil by lowering the content of the salt-based exchangeable K+ ions.

A Research of Field Tolerance for Improvement of Fire Fighting Ability in High Rise Structures (고층건축물에서의 소방력 향상을 위한 현장적응성에 관한 연구)

  • Choi, Tae-Young;Park, Nam-Kwun
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • There are currently various domestic high-rise construction projects underway. Such projects may maximize the economic impact, and yield other benefits, however, there is also a possibility of fire, terrorism, and other disasters that one may not even imagine. This study of high-rise structures' damage reduction measures the fire-fighting ability of the fire fighters at the scene of an indoor emergency upon entry. In order to identify the practical limitations, the fire fighter entered from the 1st floor to reach the top 54th floor. 1.Time required to reach the top floor without the respirator 2.Time required as well as pressure consumption to reach the top floor with the respirator equipped was measured; based on the results, performable range of operations during a fire fighting activity were presented.

A Study on the Test Load Simulation Technique for T-50 Full Scale Durability Test (T-50 전기체 내구성시험 시험하중 설계기술 연구)

  • Jung, Jae-Kwon;Lee, Kee-Bhum;Yang, Myung-Seog;Shul, Chang-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.82-87
    • /
    • 2004
  • The general requirements to achieve the structural integrity of the airframe are described in the military specification, MIL-HDBK-1530. One of these requirements is the durability and damage tolerance of the airframe, which should be shown through the analysis and test based on the related specifications. This paper describes the full scale durability test load simulation to evaluate the structural safety and durability of the advanced trainer, T-50. The test load simulation was performed according to the procedure in the military specification and the KAF contract requirements. The durability test design technique which involve the floating test set-up, the optimal test load simulation method, and the 6-DOF test article balance method to secure the real flight conditions as many as possible. It was confirmed that this method will be available in a similar full-scale airframe structural test in future.

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

Biodegradation of Mixture of Benzoate and m-Toluate with Pseudomonas sp. (Pseudomonas sp. 의한 Benzoate와 m-Toluate 혼합물의 생분해)

  • 정준영;김교창;조재민
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.352-357
    • /
    • 1998
  • Biodegradation of benzoate and m-toluate was investigated using a Pseudomonas sp. isolated in a continuous culture for 45 days with a step-wise increase of the subsrates. The optimum mixture ratio of benzoate and m-toluate was 75% and 25%, respectively. During 45-day culture, removal of benzoate and m-toluate, which was replaced 2,000 ppm on the 30th day were 94% and 79%, respectively, when COD removal rate was 80%. The enzymatic activity of catechol 1,2-dioxygenase increased and that of catechol 2,3-dioxygenase decreased as the concentration of m-toluate was increased. These results suggested that m-toluate induced enzyme activity for degradation of benzoate. The shape of isolated strain in the continuous culture was investigated with SEM and the results showed that the cell shape was more damage according to the higher concentration of aromatic hydrocarbons. Therefore, we suggested that the tolerance against aromatic hydrocarbons was related to not only enzymatic activity but also characteristic of cell membrane or cell wall.

  • PDF

Current Status of Ceramic Composites Technology for Space Vehicle (우주비행체용 세라믹 복합재료 해외기술 동향)

  • Lee, Ho-Sung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.76-84
    • /
    • 2009
  • In this review an attempt is made to give the background to the current trends in foreign developments in the ceramic matrix composites for space vehicles. The lightweight and high temperature specific modulus properties of ceramic composites have continued to develop for designing advanced propulsion structures and for increasing space vehicle performances. Those applications require advanced materials with good resistance to high temperatures, to oxidation environments and to mechanical stresses. The advantages of ceramic matrix composites are the low specific weight, the high specific strength over a wide temperature ranges, and their good damage tolerance compared to tungsten, pyrographites and polycrystalline graphites. Due to these advantages ceramic matrix composites are currently used in rocket engine chamber, nozzle, solar array, radar antenna, mirror support structures, hypersonic leading edge articles, heat shields, reentry vehicle nose tips, and radiators for spacecraft. Various processes are discussed together with examples of current application so that some of the advanced technologies can be possibly applied to Korean space technology.

  • PDF

Effects of Abscisic acid and Temperature on the Anthocyanin Accumulation in Seedlings of Arabidopsis thaliana

  • Song Ju-Yeun;Kim Tae-Yun;Hong Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1093-1102
    • /
    • 2005
  • Effects of abscisic acid(ABA) and temperature on the anthocyanin accumulation and phenylalanine ammonia Iyase(PAL) activity were investigated in seedlings of Arabidopsis thaliana. In time course study, exogenous application of ABA $(50-1000\;{\mu}M)$ led to a noticeable increase in anthocyanin pigments which persisted over the following 5 days. Anthocyanins increased in concert with the chlorophyll loss. The activity of PAL, a key enzyme in the phenylpropanoid pathway, increased on exposure to ABA and reached maximum on the 4th day, This result shows that anthocyanin synthesis and PAL activity have a close physiological relationships. In the effects of temperatures ($10^{\circ}C,\;17^{\circ}C,\;25^{\circ}C$and $30^{\circ}C$) on anthocyanin accumulation and PAL activity in seedlings, a moderate-low temperatures ($17^{\circ}C$) enhanced both anthocyanin content and PAL activity, whereas elevated temperatures ($30^{\circ}C$) showed low levels of anthocyanin and PAL activity, suggesting a correlation between temperature-induced anthocyanin synthesis and the accumulation of PAL mRNA. Simultaneous application of ABA with temperatures Induced higher anthocyanin synthesis and PAL activity in seedlings than ABA or temperature stress alone. Moderate-low temperature with ABA exposure elicited the maximal induction of anthocyanin synthesis and PAL activity. Therefore, ABA treatment significantly increased thermotolerance in .A. thalinan seedlings. Ethephon and ABA showed similar mode of action in physiological effects on anthocyanin accumulation and PAL activity. Our data support that anthocyanins may be protective in preventing damage caused by environmental stresses and play an important role in the acquisition of freezing tolerance.