• Title/Summary/Keyword: Damage Scale

검색결과 1,374건 처리시간 0.03초

Field Investigation of Debris Flow Hazard Area on the Roadside and Evaluating Efficiency of Debris barrier

  • Lee, Jong Hyun;Lee, Jung Yub;Yoon, Sang Won;Oak, Young Suk;Kim, Jae Jeong;Kim, Seung Hyun
    • 지질공학
    • /
    • 제25권4호
    • /
    • pp.439-447
    • /
    • 2015
  • In this study, specific sections vulnerable to debris flow damage were selected, and a complete enumeration survey was performed for the sections with debris flow hazards. Based on this, the characteristics of the sections with debris flow hazards and the current status of actions against debris flow were examined, and an efficient installation plan for a debris flow damage prevention method that is required in the future was suggested. The results indicated that in the Route 56 section where the residential density is relatively higher between the two model survey sections, facilities for debris flow damage reduction were insufficient compared to those in the Route 6 section which is a mountain area. It is thought that several sites require urgent preparation of a facility for debris flow damage reduction. In addition, a numerical analysis showed that for debris barriers installed as a debris flow damage prevention method, distributed installation of a number of small-scale barriers facilities within a valley part was more effective than single installation of a large-scale debris barrier at the lower part of a valley.

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

콘크리트 부유식 구조물 함체의 건전성 평가 (Integrity Estimation for Concrete Pontoon of Floating Structure)

  • 박수용;김민진;서영교
    • 한국항해항만학회지
    • /
    • 제37권5호
    • /
    • pp.527-533
    • /
    • 2013
  • 본 논문은 구조물의 동적특성인 모드형상과 고유진동수를 이용한 손상탐지와 유효 물성치 추정을 통하여 콘크리트 축소모형과 실제 콘크리트 부유식 구조물 함체의 건전성을 평가하였다. 손상탐지의 경우 콘크리트 축소모형에 대한 동적실험을 수행하여 모드형상을 추출한 후 손상탐지기법에 적용하여 실용성을 증명하였다. 또한 실제 콘크리트 부유식 구조물 함체의 모드형상 및 고유진동수를 실험을 통하여 구한 후 구조계추정기법을 이용하여 콘크리트의 유효 물성치를 추정하였다. 손상탐지기법을 이용하여 축소모형의 손상부재를 정확히 찾아내었으며, 구조계추정기법을 이용하여 실제 콘크리트 부유식 함체의 현재 유효 물성치를 추정하였다.

Damage assessment of shear-type structures under varying mass effects

  • Do, Ngoan T.;Mei, Qipei;Gul, Mustafa
    • Structural Monitoring and Maintenance
    • /
    • 제6권3호
    • /
    • pp.237-254
    • /
    • 2019
  • This paper presents an improved time series based damage detection approach with experimental verifications for detection, localization, and quantification of damage in shear-type structures under varying mass effects using output-only vibration data. The proposed method can be very effective for automated monitoring of buildings to develop proactive maintenance strategies. In this method, Auto-Regressive Moving Average models with eXogenous inputs (ARMAX) are built to represent the dynamic relationship of different sensor clusters. The damage features are extracted based on the relative difference of the ARMAX model coefficients to identify the existence, location and severity of damage of stiffness and mass separately. The results from a laboratory-scale shear type structure show that different damage scenarios are revealed successfully using the approach. At the end of this paper, the methodology limitations are also discussed, especially when simultaneous occurrence of mass and stiffness damage at multiple locations.

Effect of Localized Recrystallization Distribution on Edgebond and Underfilm Applied Wafer-level Chip-scale Package Thermal Cycling Performance

  • Lee, Tae-Kyu
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.27-34
    • /
    • 2015
  • The correlation between crack propagation and localized recrystallization are compared in a series of cross section analyses on thermal cycled edgebond and underfilm material applied wafer level chip scale package (WLCSP) components with a baseline of no-material applied WLCSP components. The results show that the crack propagation distribution and recrystallization region correlation can explain potential degradation mechanisms and support the damage accumulation history in a more efficient way. Edgebond material applied components show a shift of damage accumulation to a more localized region, thus potentially accelerated the degradation during thermal cycling. Underfilm material applied components triggered more solder joints for a more wider distribution of damage accumulation resulting in a slightly improved thermal cycling performance compared to no-material applied components. Using an analysis on localized distribution of recrystallized areas inside the solder joint showed potential value as a new analytical approach.

반복변형된 Cu 및 Cu-Al 단결정 표면형상의 나노-스케일 관찰 (Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals)

  • 최성종;이권용
    • Tribology and Lubricants
    • /
    • 제16권5호
    • /
    • pp.389-394
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AEM) was shown to be the powerful tool for nano-scale characterization of material surfaces. Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform, and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

재해통계기반 남해연안지역 풍랑피해액예측함수 제안 (Proposal for Wind Wave Damage Cost Estimation at the Southern Coastal Zone based on Disaster Statistics)

  • 추태호;윤관선;권용빈;박상진;김성률
    • 한국콘텐츠학회논문지
    • /
    • 제17권4호
    • /
    • pp.267-274
    • /
    • 2017
  • 태풍, 지진, 홍수, 폭우, 가뭄, 폭염, 풍랑, 쓰나미 등과 같은 자연재해는 발생지점과 규모를 예측하기 어려울 뿐만 아니라 인간생활에 피해를 주고 있다. 하지만, 재해통계를 기반으로 과거피해사례와 피해액을 분석하여 예상피해액을 산출할 수 있다면, 산출한 결과를 바탕으로 즉시 초동조치에 임할 수 있고, 피해를 최소한으로 저감할 수 있을 것이다. 따라서, 본 논문에서는 우리나라 남해연안지역을 대상으로 풍랑피해액예측함수를 제안한다. 본 예측함수는 재해연보('91년~'14년)에 기록된 풍랑 및 태풍의 재해통계, 남해연안지역의 특성을 고려한 인자, 해안 기상조건을 설명변수로 개발하였다.

멀티스케일 모델링에 의한 복합재료 평판의 충격해석 (Impact analysis of composite plate by multiscale modeling)

  • 지국현;백승훈;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.67-70
    • /
    • 2004
  • An investigation was performed to study the impact damage of the laminated composite plates caused by a low- velocity foreign object with multi-scale modeling based on the concepts of Direct Numerical Simulation (DNS)[4]. In the micro-scale part, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. A micro-scalemodel was developed for predicting the initiation of the damage and the extent of the final damage as a function of material properties, laminate configuration and the impactor's mass, etc. Anda macro-scale model was developed for description of global dynamic behavior. The connection betweenmicroscopic and macroscopic is implemented by the tied interface constraints of LS-DYNA contact card. A transient dynamic finite element analysis was adopted for calculating the contact force history and the stresses and strains inside the composites during impact resulting from a point-nose impactor. The low-velocity impact events such as contact force, deformation, etc. are simulated in the macroscopic sense and the impact damages, fiber-breakage, matrix cracking and delamination etc. are examined in the microscopic sense.

  • PDF

A two-step approach for joint damage diagnosis of framed structures using artificial neural networks

  • Qu, W.L.;Chen, W.;Xiao, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.581-595
    • /
    • 2003
  • Since the conventional direct approaches are hard to be applied for damage diagnosis of complex large-scale structures, a two-step approach for diagnosing the joint damage of framed structures is presented in this paper by using artificial neural networks. The first step is to judge the damaged areas of a structure, which is divided into several sub-areas, using probabilistic neural networks with natural Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents by using the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the damaged sub-area input. The results of numerical simulation show that the proposed approach could diagnose the joint damage of framed structures induced by earthquake action effectively and has reliable anti-jamming abilities.

Damage Detection Technique based on Texture Analysis

  • Jung, Myung-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.698-701
    • /
    • 2006
  • Remotely sensed data have been utilized efficiently for damage detection immediately after the natural disaster since they provide valuable information on land cover change due to spatial synchronization and multitemporal observation over large areas. Damage information obtained at an early stage is important for rapid emergency response and recovery works. Many useful techniques to analyze the characteristics of the pre- and post-event satellite images in large-scale damage detection have been successfully investigated for emergency management. Since high-resolution satellite images provide a wealth of information on damage occurred in urban areas, they are successfully utilized for damage detection in urban areas. In this research, a method to perform automated damage detection is proposed based on the differences of the textural characteristics in pre- and post- high resolution satellite images.

  • PDF