• 제목/요약/키워드: Damage Magnitude

검색결과 333건 처리시간 0.025초

2017년 포항지진으로 피해를 입은 국내 필로티형 건물의 지진 거동 (Seismic Behavior of Domestic Piloti-type Buildings Damaged by 2017 Pohang Earthquake)

  • 김태완;추유림;김승래;번다리 디워스
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.161-168
    • /
    • 2018
  • Pohang earthquake occurred on November 15, 2017, with a magnitude of 5.4. The damage of the structure caused by the Pohang earthquake was the most significant in 4-story piloti-type buildings, where the damage patterns were different according to the location of columns and walls at the first story. One building with a staircase at a corner shows shear failure at columns, and Another building with a staircase in the middle shows no failure or shear failure at staircase walls. Therefore, two different piloti-type buildings were selected; one has a staircase at a corner and another has in the middle, and the seismic behavior of the buildings were examined by nonlinear dynamic analysis applying a ground motion measured at Pohang. Analytical model well simulated the actual behavior of the piloti-type buildings during the earthquake. Analysis results showed that walls have an insufficient shear strength wherever the location of the staircase is and columns with insufficient transverse reinforcement could be failed when the staircase is located at a corner. Conclusively, structural engineers should design columns and walls in piloti-type buildings to possess sufficient capacity according to the location of staircase.

스마트시티의 재난안전을 위한 사회기술기반의 주민 자조(自助) 방안 고찰 - 일본 가마이시시(釜石市) 교훈을 중심으로 (A Study on inhabitants self-help scheme via sociotechnology for disaster safety of the smart city - Mainly on lessons of Kamaisi-city in Japan)

  • 장혜정;김도년
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.388-403
    • /
    • 2016
  • 2016년 7월 5일 울산 앞바다 규모5.0 지진은 대한민국이 지진에 안전하지 않을 수 있다는 불안감을 주었고 2016년 7월 20일 부산 가스냄새는 지역주민들에게 지진에 대한 괴담 확산으로 번졌다. 이와 같이 스마트 시티에서는 재난안전에 관한 정확한 정보가 중요하며 피해주민과 커뮤니티에 대한 빠른 대응이 재난회복에 영향을 주게 된다. 본 연구는 스마트시티의 피해주민을 대상으로 사회기술을 응용하여 재난에 대한 불안환기모델의 중요성을 밝히고, 동일본대지진 당시 가마이시시(釜石市) 주민들의 자조(自助)내용을 심도 있게 고찰하여 적용 방안을 찾아내고, 재난대응 및 회복을 위한 보완수단으로 주민들이 실천할 수 있는 자조방안에 대해 제시하고자 한다.

온도변화에 따른 주석 도금한 전기 커넥터의 미동마멸 부식 거동 (Fretting Corrosion Behavior of Tin-plated Electric Connectors with Variation in Temperature)

  • 오만진;강세형;이만석;김호경
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.146-155
    • /
    • 2014
  • In this study, we conduct fretting corrosion tests on tin-plated brass coupons to investigate the effect of temperature on fretting corrosion for various span amplitudes. We prepare a coupled fretting corrosion specimens using a tin-plated brass coupon with a thickness of $10{\mu}m$. One specimen is a flat coupon and the other specimen is a coupon with a protuberance in 1 mm radius, which is produced using 2 mm diameter steel ball. We conduct fretting corrosion tests at $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$ by rubbing the coupled coupons together at the contact between the flat and protuberance coupons. We measure electric resistance of the contact during the fretting corrosion test period. There is increase in resistance with fretting cycles. It is found that rate of increase in electric resistance becomes faster with increase in testing temperature. Magnitude of friction coefficient increases with fretting span amplitudes. And, change in friction coefficient becomes desensitized to the increment in span amplitude. Assuming that failure cycle is the cycle with an electric resistance of $0.01{\Omega}$, we find that failure lifetime ($N_f$) decreases with increase in testing temperature. Furthermore, based on the assumption that the damage rate of the connector is inversely related to the failure cycle, we calculate the activation energy for fretting damage to be 13.6 kJ/mole by using the Arrhenius equation. We propose a method to predict failure cycle at different temperatures for span amplitudes below $30{\mu}m$. Friction coefficients generally increase with increase in span amplitude and decrease in testing temperature.

북한지역에 대한 기상학적 가뭄지수의 적용 (Application of Meteorological Drought Indices for North Korea)

  • 남원호;유승환;장민원;최진용
    • 한국농공학회논문집
    • /
    • 제50권3호
    • /
    • pp.3-15
    • /
    • 2008
  • North Korea is one of the vulnerable countries facing the threat of a drought, so that it is unavoidable to experience fatal damage when drought is occurred, and it is necessary to improve the drought response capability of water resources systems. However, it is still difficult to find research efforts for drought characteristics and drought management in North Korea. This study is to quantify drought duration and magnitude and to analyze drought characteristics in North Korea. In order to quantitatively identify historical drought conditions and to evaluate their variability, drought indices are commonly used. In this study, drought indices including dry-day index, deciles of normal precipitation, Phillips drought index, standardized precipitation index and Palmer drought severity index are calculated and compared monthly using the weather data for the twenty one meteorological stations in North Korea. The indices compared with the drought damage records that have reported from 1990 to present to understand how the indices can explain the drought. A comparative study was also conducted to evaluate the relative severity of the significant droughts occurred during 2000 and 2001 which were reported as the worst drought in North Korea. Drought indices calculated from this study demonstrated that those can be the effective tools in quantitatively evaluating drought severity and measures of drought. Thus it is recommended the distributed trend of drought be considered when the plan or measures for drought in North Korea are established.

Estimation of the Crustal Deformation Caused by Earthquake and Its Use in Updating Published Coordinates of Geodetic Control Points - A Case Study of the 2011 Tohoku Earthquake’s Impact in South Korea

  • Cho, Jae Myoung
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.485-495
    • /
    • 2015
  • The Tohoku Earthquake, which hit Japan on March 11, 2011, was a massive magnitude 9.0 earthquake, with the earthquake itself causing damage and the resulting tsunami additionally causing enormous material and human damage. The crustal deformation at that time reached a maximum of 5.24 m in Japan, Neighboring countries South Korea and China as well as the Southeast Asian region also witnessed crustal deformation ranging from a few centimeters to a few meters. The detailed analysis in this study based on data from 72 of the sites in South Korea where GNSS CORS was installed showed that South Korea underwent heterogeneous crustal deformation from the Tohoku earthquake, with a maximum of 55.5 mm, a minimum of 9.2 mm, and an average of 22.42 mm. A crustal deformation model was developed, applied, and evaluated for accuracy in this study for a prompt revision of the survey results of the control points that were changed by the crustal deformation. The survey results were revised by applying a crustal deformation model to the 1,195 unified control points installed in South Korea prior to the Tohoku earthquake. The comparison of these 1,195 points with their new survey results showed that the RMSE decreased from 14.1 to 3.4 mm and that the maximum result difference declined from 39 to 10 mm. Revision of the survey results of the control points using the crustal deformation model is deemed very useful considering that the accuracy of the survey results of the unified control points in South Korea is 3 cm.

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

고층 RC 벽식 건물의 지진 취약도 분석 (Seismic Fragility Analysis of High-Rise RC Box-Type Wall Building Structures)

  • 정기현;이한선;황경란;권오성;김승직
    • 한국지진공학회논문집
    • /
    • 제20권3호
    • /
    • pp.155-162
    • /
    • 2016
  • Observations of the damages to high-rise reinforced concrete (RC) wall building structures caused by by recent earthquakes in Chile ($M_w$ 8.8, February 2010) and New Zealand (February 2011, $M_L$ 6.3) have generally exceeded expectations. Firstly, this study estimated the seismic damage levels of 15-story RC box-type wall building structures using the analytical models calibrated by the results of a shaking table test on a 1:5 scale 10-story RC box-type wall building model. Then, the seismic fragility analysis of the prototype model was conducted by using the SAC/FEMA method and the incremental dynamic analysis (IDA). To compensate for the uncertainties and variability of ground motion and its impacts on the prototype model, in the SAC/FEMA method, a total of 61 ground motion records were selected from 20 earthquakes, with a magnitude ranging from 5.9 to 8.8 and an epicentral distance ranging from 5 to 105km. In the IDA, a total of 11 ground motion records were used based on the uniform hazard response spectrum representing a return period of 2,475 years. As a result, the probabilities that the limits of the serviceability, damage control, and collapse prevention would be exceeded were as follows: from the SAC/FEMA method: 79%, 0.3%, and 0%, respectively; and from the IDA: 57%, 1.7%, and 0%, respectively.

자연진동을 이용한 건물의 건전도 평가 (Damage Detection of Building Structures Using Ambient Vibration Measuresent)

  • 김상윤;권대홍;유석형;노삼영;신성우
    • KIEAE Journal
    • /
    • 제7권4호
    • /
    • pp.147-152
    • /
    • 2007
  • Numerous non-destructive tests(NDT) to assess the safety of real structures have been developed. System identification(SI) techniques using dynamic responses and behaviors of structural systems become an outstanding issue of researchers. However the conventional SI techniques are identified to be non-practical to the complex and tall buildings, due to limitation of the availability of an accurate data that is magnitude or location of external loads. In most SI approaches, the information on input loading and output responses must be known. In many cases, measuring the input information may take most of the resources, and it is very difficult to accurately measure the input information during actual vibrations of practical importance, e.g., earthquakes, winds, micro seismic tremors, and mechanical vibration. However, the desirability and application potential of SI to real structures could be highly improved if an algorithm is available that can estimate structural parameters based on the response data alone without the input information. Thus a technique to estimate structural properties of building without input measurement data and using limited response is essential in structural health monitoring. In this study, shaking table tests on three-story plane frame steel structures were performed. Out-put only model analysis on the measured data was performed, and the dynamic properties were inverse analyzed using least square method in time domain. In results damage detection was performed in each member level, which was performed at story level in conventional SI techniques of frequency domain.

Proposal of new ground-motion prediction equations for elastic input energy spectra

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.485-510
    • /
    • 2014
  • In performance-based seismic design procedures Peak Ground Acceleration (PGA) and pseudo-Spectral acceleration ($S_a$) are commonly used to predict the response of structures to earthquake. Recently, research has been carried out to evaluate the predictive capability of these standard Intensity Measures (IMs) with respect to different types of structures and Engineering Demand Parameter (EDP) commonly used to measure damage. Efforts have been also spent to propose alternative IMs that are able to improve the results of the response predictions. However, most of these IMs are not usually employed in probabilistic seismic demand analyses because of the lack of reliable Ground Motion Prediction Equations (GMPEs). In order to define seismic hazard and thus to calculate demand hazard curves it is essential, in fact, to establish a GMPE for the earthquake intensity. In the light of this need, new GMPEs are proposed here for the elastic input energy spectra, energy-based intensity measures that have been shown to be good predictors of both structural and non-structural damage for many types of structures. The proposed GMPEs are developed using mixed-effects models by empirical regressions on a large number of strong-motions selected from the NGA database. Parametric analyses are carried out to show the effect of some properties variation, such as fault mechanism, type of soil, earthquake magnitude and distance, on the considered IMs. Results of comparisons between the proposed GMPEs and other from the literature are finally shown.

Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure

  • Cahill, Paul;Pakrashi, Vikram;Sun, Peng;Mathewson, Alan;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.287-303
    • /
    • 2018
  • Applications of energy harvesting from mechanical vibrations is becoming popular but the full potential of such applications is yet to be explored. This paper addresses this issue by considering an application of energy harvesting for the dual objective of serving as an indicator of structural health monitoring (SHM) and extent of control. Variation of harvested energy from an undamaged baseline is employed for this purpose and the concept is illustrated by implementing it for active vibrations of a pipe structure. Theoretical and experimental analyses are carried out to determine the energy harvesting potential from undamaged and damaged conditions. The use of energy harvesting as indicator for control is subsequently investigated, considering the effect of the introduction of a tuned mass damper (TMD). It is found that energy harvesting can be used for the detection and monitoring of the location and magnitude of damage occurring within a pipe structure. Additionally, the harvested energy acts as an indicator of the extent of reduction of vibration of pipes when a TMD is attached. This paper extends the range of applications of energy harvesting devices for the monitoring of built infrastructure and illustrates the vast potential of energy harvesters as smart sensors.