• Title/Summary/Keyword: Damage Location

Search Result 933, Processing Time 0.023 seconds

Damage Tolerant Design for the Tilt Rotor UAV (틸트 로터형 무인항공기의 손상허용 설계)

  • Park, Young Chul;Im, Jong Bin;Park, Jung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

A structural health monitoring system based on multifractal detrended cross-correlation analysis

  • Lin, Tzu-Kang;Chien, Yi-Hsiu
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.751-760
    • /
    • 2017
  • In recent years, multifractal-based analysis methods have been widely applied in engineering. Among these methods, multifractal detrended cross-correlation analysis (MFDXA), a branch of fractal analysis, has been successfully applied in the fields of finance and biomedicine. For its great potential in reflecting the subtle characteristic among signals, a structural health monitoring (SHM) system based on MFDXA is proposed. In this system, damage assessment is conducted by exploiting the concept of multifractal theory to quantify the complexity of the vibration signal measured from a structure. According to the proposed algorithm, the damage condition is first distinguished by multifractal detrended fluctuation analysis. Subsequently, the relationship between the q-order, q-order detrended covariance, and length of segment is further explored. The dissimilarity between damaged and undamaged cases is visualized on contour diagrams, and the damage location can thus be detected using signals measured from different floors. Moreover, a damage index is proposed to efficiently enhance the SHM process. A seven-story benchmark structure, located at the National Center for Research on Earthquake Engineering (NCREE), was employed for an experimental verification to demonstrate the performance of the proposed SHM algorithm. According to the results, the damage condition and orientation could be correctly identified using the MFDXA algorithm and the proposed damage index. Since only the ambient vibration signal is required along with a set of initial reference measurements, the proposed SHM system can provide a lower cost, efficient, and reliable monitoring process.

Diagnosis and Evaluation of Conservation State of Mural Paintings in Payathonzu Temple on Bagan Heritage Site in Myanmar

  • Lee, Hwa Soo;Kim, Seol Hui;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.494-507
    • /
    • 2019
  • A diagnostic investigation of the conservation state of damaged murals of the Payathonzu temple mainly indicated delamination, exfoliation, and contamination of the coloring layer; cracks and damage to the wall; and separation from gaps. In particular, vulnerabilities resulting from cracks in the wall and damage from gaps demand swift reinforcement measures. Ultrasonic testing uncovered damage caused by gaps between the base layer and plastered wall in several areas of the mural, vulnerable parts in the wall around the cracks, and considerable degradation of the physical properties where cracks and gaps were severe. Moisture measurements identified vast disparities in moisture depending on location even within a single area of the mural, and it was clear that these disparities were the result of environmental conditions such as humidity. Damage to the murals in monument 477 was the most severe, and a diagnostic of the physical properties uncovered severe physical damage to the upper part of the mural as well as to the corridor ceiling, thus presenting the need for conservation treatment utilizing scientific diagnosis as well as objective data.

Diagnostics of Truss Structures via Vibration Monitoring (진동감시를 통한 트러스 구조물의 진단)

  • Park, Soo-Yong;Kim, Jeong-Tae;Kim, Yeon-Bok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.63-74
    • /
    • 2001
  • In this paper the feasibility of Nondestructive Damage Detection (NDD) in large structures is demonstrated via simulating vibration monitoring of such structures. The theory of NDD for truss type structures is formulated. To examine the feasibility of the theory, a finite element model of a 3-D truss structure, which consists of sixteen bays and includes 246 elements, is developed to simulate damage. Four damage cases are simulated numerically and the cases range from the structure being damaged in one location to the structure being damaged in three locations. For the given modal parameters, this study reveals very good results for small amounts of damage as well as large damage.

  • PDF

Integrity Estimation of The RC Members Damaged by Corrosion of Main Rebar (철근이 부식된 철근콘크리트 구조물의 건전도 평가기술)

  • Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.141-146
    • /
    • 2007
  • It is necessary to guarantee the safety, serviceability and durability of reinforced concrete structures over their service life. However, concrete structures represent a decrease in their durability due to the effects of external environments according to the passage of time, and such degradation in durability can cause structural degradation in materials. In concrete structures, some degradations in durability increase the corrosion of embedded rebars and also decrease the structural performance of materials. Thus, the structural condition assessment of RC materials damaged by corrosion of rebars becomes an important factor that judges needs to apply restoration. In order to detect the damage of reinforced concrete structures, a visual inspection, a nondestructive evaluation method(NDE) and a specific loading test have been employed. However, obscurities for visual inspection and inaccessible members raise difficulty in evaluating structure condition. For these reasons, detection of location and quantification of the damage in structures via structural response have been one of the very important topics in system identification research. The main objective of this project is to develope a methodologies for the damage identification via static responses of the members damaged by durability. Six reinforced concrete beams with variables of corrosion position and corrosion width were fabricated and the damage detections of corroded RC beams were performed by the optimization and the conjugate beam methods using static deflection. In results it is proved that the conjugate beam method could predict the damage of RC members practically.

A Feasibility Study on the Damage Detection of Infinite Beams Using the Structural Intensity Measurement Technique (진동 인텐시티 계측 방법을 이용한 무한보의 손상감지에 관한 기초 연구)

  • Huh, Young-Cheol;Lee, Jong-Won;Kim, Jae-Kwan;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.54-58
    • /
    • 2008
  • The structural intensities have been applied to understand a source point and the path of vibrational energy flows in interested structures by many researchers. In this paper, a feasibility study was carried out to investigate the characteristics of a damaged beam with a inflicted open crack using the structural intensities. The damaged beam was taken as a continuous system with equivalent bending stiffness and the flexural vibrations were only considered in numerical simulation and experiments. A four(4)-transducer array was used to measure the flexural vibrations of the beam and the structural intensities were estimated by means of cross spectral density method. As a result, the magnitude changes of the structural intensities could be observed in the vicinity of the damage location and a damage index was newly proposed to identify the damage zone. It has been confirmed that the measurement of the structural intensities was simple and effective method to find out the damage zone.

  • PDF

Investigations on Inundation Damage in Greenhouse Complex Established at Lowlands on the Geumgang Riverside (금강변 저지대 시설원예단지의 침수피해 실태와 개선방안 조사연구)

  • Nam, Sang-Woon;Kim, Tae-Cheol;Kim, Dae-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.47-55
    • /
    • 2010
  • Investigations on the inundation damage and improvement measures were carried out centering around the protected horticultural complex concentrated in lowlands on the side of Geum river, in Nonsan and Buyeo, Chungnam. Most greenhouses were single-span plastic houses in this area, and tomato, strawberry and watermelon were cultivated mainly. 45.8 % of whole farmhouse were experienced in damage by inundation, and a frequency of the damage was average once in 11 years. The most urgent problem at the greenhouse culture in this area was showed in order of drainage improvement, irrigation water resources and energy saving. Consideration items in drainage improvement project for protected horticulture were showed in order of extending drain pumps, extending drain canals, using concrete flume in drain ditch. It needs to consider systematic plans that can restrain new establishment of greenhouses on the lowland paddy field in drainage area. It is difficult to remove greenhouses which are already established or prohibit cultivation. Therefore we should impose minimum duty items so that greenhouse tillers can cope with inundation. And it is thought that managing agency need to minimize farmers damage by improving drainage ability and introducing maintenance pattern that is different from rice cropping.

Experimental deployment and validation of a distributed SHM system using wireless sensor networks

  • Castaneda, Nestor E.;Dyke, Shirley;Lu, Chenyang;Sun, Fei;Hackmann, Greg
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.787-809
    • /
    • 2009
  • Recent interest in the use of wireless sensor networks for structural health monitoring (SHM) is mainly due to their low implementation costs and potential to measure the responses of a structure at unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing must be developed in parallel with this technology to significantly reduce the power consumption and communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection system based on a distributed processing approach is proposed and experimentally validated using a wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board processing capabilities of the wireless sensor are exploited to significantly reduce the communication load and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted to the base station for decision-making. The results indicate that this distributed implementation can be used to successfully detect and localize regions of damage in a structure. To further support the experimental results obtained, the capabilities of the proposed system were tested through a series of numerical simulations with an expanded set of damage scenarios.

Online damage detection using pair cointegration method of time-varying displacement

  • Zhou, Cui;Li, Hong-Nan;Li, Dong-Sheng;Lin, You-Xin;Yi, Ting-Hua
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.309-325
    • /
    • 2013
  • Environmental and operational variables are inevitable concerns by researchers and engineers when implementing the damage detection algorithm in practical projects, because the change of structural behavior could be masked by the conditions in a large extent. Thus, reliable damage detection methods should have a virtue of immunity from environmental and operational variables. In this paper, the pair cointegration method was presented as a novel way to remove the effect of environmental variables. At the beginning, the concept and procedure of this approach were introduced, and then the theoretical formulation and numerical simulations were put forward to illustrate the feasibility. The jump exceeding the control limit in the residual indicates the occurrence of damage, while the direction and magnitude imply the most potential damage location. In addition, the simulation results show that the proposed method has strong ability to resist the noise.

Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks

  • Nguyen, Duong H.;Bui, Thanh T.;De Roeck, Guido;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.175-183
    • /
    • 2019
  • This paper deals with damage detection in a girder bridge using transmissibility functions as input data to Artificial Neural Networks (ANNs). The original contribution in this work is that these two novel methods are combined to detect damage in a bridge. The damage was simulated in a real bridge in Vietnam, i.e. Ca-Non Bridge. Finite Element Method (FEM) of this bridge was used to show the reliability of the proposed technique. The vibration responses at some points of the bridge under a moving truck are simulated and used to calculate the transmissibility functions. These functions are then used as input data to train the ANNs, in which the target is the location and the severity of the damage in the bridge. After training successfully, the network can be used to assess the damage. Although simulated responses data are used in this paper, the practical application of the technique to real bridge data is potentially high.