• Title/Summary/Keyword: Damage Curves

Search Result 403, Processing Time 0.033 seconds

Damage Curves of the Simple Beam under the Impulsive loadings (충격하중에 의한 단순보의 손상곡선)

  • Lee, Sang-Ho;Ryu, Yong-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.157-164
    • /
    • 2004
  • The safety criteria for the simple beam with a rigid-plastic model under the impulsive loadings are established with the peak-load ratio to the static collapse load and impulse ratio to the ideal impulse producing the plastic hinge at the mid-span. It is shown that the impulse and peak-load of the impulsive loadings are the important factors for the damage of the structures. It is also shown that the damage curves with the peak-load and impulse ratio may be useful method to estimate the damage of the structures due to the emphasis on the equivalent dynamic loads rather than the equivalent static loads in the process of deriving the curve.

Seismic Fragility Functions for Steel Moment Resisting Frames using Incremental Dynamic Analyses (증분동적해석을 이용한 철골모멘트골조의 지진취약도 함수)

  • Lee, Seung-Won;Yi, Waon-Ho;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.509-516
    • /
    • 2014
  • Accuracy of seismic response evaluated by a capacity spectrum method (CSM) is generally known to be less than that by Incremental dynamic analysis (IDA). In this paper, a procedure for IDA based seismic fragility curves for steel moment resisting frames was suggested. This study compares seismic fragility curves using the suggested method (IDA method) with those using a CSM and intends to verify the validity of the IDA method. The shapes of both seismic fragility curves are similar in slight and moderate damage states. However, in the case of extensive and complete damage states, the fragility curves obtained from the IDA method presents a more steep slope due to less variation (or uncertainties). This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM.

Seismic Fragility of Bridges in terms of Seismic Performance of RC Piers (철근콘크리트 교각의 내진성능에 따른 교량의 지진취약도)

  • Lee, Dae-Hyoung;Park, Chang-Kyu;Kim, Hyun-Jun;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.93-96
    • /
    • 2006
  • This study represents results of performance-based fragility analysis of reinforced concrete (RC) bridge. Monte carlo simulation is performed to study nonlinear dynamic responses of RC bridge. Two-parameter log-normal distribution function is used to represent the fragility curves. These two-parameters, referred to as fragility parameters, are estimated by the traditional maximum likelihood procedure, which. is treated each event of RC bridge pier damage as a realization of Bernoulli experiment. In order to formulate the fragility curves, five different damage states are described by two practical factors: the displacement and curvature ductility, which are mostly influencing on the seismic behavior of RC bridge piers. Five damage states are quantitatively assessed in terms of these seismic ductilities on the basis of numerous experimental results of RC bridge piers. Thereby, the performance-based fragility curves of RC bridge pier are provided in this paper.

  • PDF

Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake

  • Mehani, Youcef;Bechtoula, Hakim;Kibboua, Abderrahmane;Naili, Mounir
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.791-808
    • /
    • 2013
  • The main purpose of this paper is to develop seismic fragility curves for existing reinforced concrete, RC, buildings based on the post earthquake field survey and the seismic performance using capacity design. Existing RC buildings constitute approximately 65% of the total stock in Algiers. This type of buildings, RC, was widely used in the past and chosen as the structural type for the future construction program of more than 2 millions apartments all over Algeria. These buildings, suffered moderate to extensive damage after the 2003 Boumerdes earthquake, on May 21st. The determination of analytical seismic fragility curves for low-rise and mid-rise existing RC buildings was carried out based on the consistent and complete post earthquake survey after that event. The information on the damaged existing RC buildings was investigated and evaluated by experts. Thirty four (34) communes (districts) of fifty seven (57), the most populated and affected by earthquake damage were considered in this study. Utilizing the field observed damage data and the Japanese Seismic Index Methodology, based on the capacity design method. Seismic fragility curves were developed for those buildings with a large number data in order to get a statistically significant sample size. According to the construction period and the code design, four types of existing RC buildings were considered. Buildings designed with pre-code (very poor structural behavior before 1955), Buildings designed with low code (poor structural behavior, between 1955-1981), buildings designed with medium code (moderate structural behavior, between 1981-1999) and buildings designed with high code (good structural behavior, after 1999).

Seismic Fragility Evaluation of Cut-and-cover Tunnel (박스형 터널의 지진 취약도 평가)

  • Park, Duhee;Nguyen, Duy-Duan;Lee, Tae-Hyung;Nguyen, Van-Quang
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.71-80
    • /
    • 2018
  • In this study, the seismic response of cut-and-cover box tunnels is evaluated from pseudo-static analyses and the fragility curves are derived. A series of site profiles were used to evaluate the effect of soil conditions. A total of 20 ground motions were used. The fragility curves were developed as functions of peak ground acceleration for three damage states, which are minor, moderate, and extensive states. The damage indices, defined as the ratio of the elastic moment to the yield moment, correlated to three damage states, were used. The curves are shown to greatly depend on the site profile. The curves are further compared to those derived in previous studies. The widely used empirically derived curves are shown not to account for the site effects, and therefore underestimate the response for soft sites.

Finite Element Damage Analysis Method for J-Resistance Curve Prediction of Cold-Worked Stainless Steels (조사취화를 모사한 스테인레스강의 파괴저항선도를 예측하기위한 유한요소 손상해석기법)

  • Seo, Jun Min;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Materials in nuclear power plants can be embrittled by neutron irradiation. According to existing studies, the effect of the material property by irradiation embrittlement can be approximately simulated by cold working (pre-strain). In this study, finite element damage analysis method using the stress-modified fracture strain model is proposed to predict J-Resistance curves of irradiated SUS316 stainless steel. Experimental data of pre-strained SUS316 stainless steel material are obtained from literature and the damage model is determined by simulating the tensile and fracture toughness tests. In order to consider damage caused by the pre-strain, a pre-strain constant is newly introduced. Experimental J-Resistance curves for various degrees of pre-strain are well predicted.

Seismic fragility of a typical bridge using extrapolated experimental damage limit states

  • Liu, Yang;Paolacci, Fabrizio;Lu, Da-Gang
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.599-611
    • /
    • 2017
  • This paper improves seismic fragility of a typical steel-concrete composite bridge with the deck-to-pier connection joint configuration at the concrete crossbeam (CCB). Based on the quasi-static test on a typical steel-concrete composite bridge model under the SEQBRI project, the damage states for both of the critical components, the CCB and the pier, are identified. The finite element model is developed, and calibrated using the experimental data to model the damage states of the CCB and the bridge pier as observed from the experiment of the test specimen. Then the component fragility curves for both of the CCB and the pier are derived and combined to develop the system fragility curves of the bridge. The uncertainty associated with the mean system fragility has been discussed and quantified. The study reveals that the CCB is more vulnerable than the pier for certain damage states and the typical steel-concrete composite bridge with CCB exhibits desirable seismic performance.

Fragility-based rapid earthquake loss assessment of precast RC buildings in the Marmara region

  • Ali Yesilyurt;Oguzhan Cetindemir;Seyhan O. Akcan;Abdullah C. Zulfikar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.13-23
    • /
    • 2023
  • Seismic risk assessment studies are one of the most crucial instruments for mitigating casualties and economic losses. This work utilizes fragility curves to evaluate the seismic risk of single-story precast buildings, which are generally favored in Marmara's organized industrial zones. First, the precast building stock in the region has been categorized into nine sub-classes. Then, seven locations in the Marmara region with a high concentration of industrial activities are considered. Probabilistic seismic hazard assessments were conducted for both the soil-dependent and soil-independent scenarios. Subsequently, damage analysis was performed based on the structural capacity and mean fragility curves. Considering four different consequence models, 630 sub-class-specific loss curves for buildings were obtained. In the current study, it has been determined that the consequence model has a significant impact on the loss curves, hence, average loss curves were computed for each case investigated. In light of the acquired results, it was found that the loss ratio values obtained at different locations within the same region show significant variation. In addition, it was observed that the structural damage states change from serviceable to repairable or repairable to unrepairable. Within the scope of the study, 126 average loss functions were presented that could be easily used by non-experts in earthquake engineering, regardless of structural analysis. These functions, which offer loss ratios for varying hazard levels, are valuable outputs that allow preliminary risk assessment in the region and yield sensible outcomes for insurance activities.

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

Seismic fragility curves using pulse-like and spectrally equivalent ground-motion records

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.79-90
    • /
    • 2020
  • 4- and 8-storey reinforced-concrete frame buildings are analyzed under the suites of the near-fault pulse-like, and the corresponding spectrally equivalent far-fault ground-motion records. Seismic fragility curves for the slight, moderate, extensive, and complete damage states are developed, and the damage probability matrices, and the mean loss ratios corresponding to the Design Basis Earthquake and the Maximum Considered Earthquake hazard levels are compared, for the investigated buildings and sets of ground-motion records. It is observed that the spectrally equivalent far-fault ground-motion records result in comparable estimates of the fragility curve parameters, as that of the near-fault pulse-like ground-motion records. As a result, the derived damage probability matrices and mean loss ratios using two suites of ground-motion records differ only marginally (of the order of ~10%) for the investigated levels of seismic hazard, thus, implying the potential for application of the spectrally equivalent ground-motion records, for seismic fragility and risk assessment at the near-fault sites.