• 제목/요약/키워드: Damage Curves

검색결과 411건 처리시간 0.029초

Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes

  • Yon, Burak
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.709-718
    • /
    • 2020
  • Fragility curves are useful tools to estimate the damage probability of buildings owing to seismic actions. The purpose of this study is to investigate seismic vulnerability of reinforced concrete (RC) buildings, according to the 2007 and 2018 Turkish Seismic Codes, using fragility curves. For the numerical analyses, typical five- and seven-storey RC buildings were selected and incremental dynamic analyses (IDA) were performed. To complete the IDAs, eleven earthquake acceleration records multiplied by various scaling factors from 0.2g to 0.8g were used. To predict nonlinearity, a distributed hinge model that involves material and geometric nonlinearity of the structural members was used. Damages to confined concrete and reinforcement bar of structural members were obtained by considering the unit deformation demands of the 2007 Turkish Seismic Code (TSC-2007) and the 2018 Turkey Building Earthquake Code (TBEC-2018). Vulnerability evaluation of these buildings was performed using fragility curves based on the results of incremental dynamic analyses. Fragility curves were generated in terms of damage levels occurring in confined concrete and reinforcement bar of structural members with a lognormal distribution assumption. The fragility curves show that the probability of damage occurring is more according to TBEC-2018 than according to TSC-2007 for selected buildings.

액상화.횡방향 영구지반변형을 받는 연속된 지중매설관로의 구조적 손상도곡선 도출 (Fragility Curve of Continuous Buried Pipeline subjected to Transverse Permanent Ground Deformation due to Liquefaction)

  • 김태욱;임윤묵
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.358-365
    • /
    • 2006
  • In this study, fragility curves of continuous buried pipelines subjected to transverse PGD (permanent ground deformation) due to liquefaction are proposed. For the waterworks system, continuos buried pipelines made of ductile iron, poly ethylene, and poly vinyl chloride are analyzed and fragility curves are drawn. Fragility curves are based on the repetitive analyses results and formulated with the dominant factors of behaviour of buried pipeline. With the use of fragility curves, engineers can estimate the status of damage of buried pipeline without overall knowledge of relevant features. Especially, fragility curves proposed in this study will act as a major module of earthquake loss estimation method. Moreover, critical value of magnitude and width of transverse PGD (by which the full damage status of buried pipelines are induced) are estimated. With the use of regression curves of these values, pre evaluation of seismic safety of buried pipelines located within liquefaction hazardous region will be possible.

  • PDF

탄성계수에 대한 SA 손상도 곡선의 안정성 (Stability of SA Fragility Curves on Elastic Modulus)

  • 이종헌
    • 한국산업융합학회 논문집
    • /
    • 제9권3호
    • /
    • pp.207-214
    • /
    • 2006
  • In this paper, the stability of SA(Spectral Acceleration) fragility curves is studied for the two sets of elastic modulus of concrete. In doing that, general purpose structural analysis program and generally used probability density function are used. The results of structural analysis are represented by Bernoulli distribution which says damage or no damage. By the use of Maximum Likelihood Method, two parameters of lognormal distribution - median and standard deviation - are found. With them, the fragility curves are constructed.

  • PDF

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

Hazus-MH 방법을 이용한 대구시 교량의 시나리오 지진에 의한 피해 예측 (Scenario-Based Earthquake Damage Estimation of Bridge Structures in Daegu City Using Hazus-MH Methodology)

  • 김시윤;김승직;장준호
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.89-96
    • /
    • 2018
  • The paper presents the damage estimation of bridge structures in Daegu city based on the scenario-based earthquakes. Since the fragility curves for domestic bridge strucures are limited, the Hazus methodology is employed to derive the fragility curves and estimate the damage. A total of four earthuquake scenarios near Daegu city are assumed and structure damage is investigated for 81 bridge structures. The seismic fragility function and damage level of each bridge had adopted from the analytical method in HAZUS and then, the damage probability using seismic fragility function for each bridge was evaluated. It was concluded that the seismic damage to bridges was higher when the magnitude of the earthquake was large or nearer to the epicenter.

CFRP 교각 재킷 보수를 적용한 손상된 철근콘크리트 교량 교각의 여진 취약도 분석 (Aftershock Fragility Assessment of Damaged RC Bridge Piers Repaired with CFRP Jackets under Successive Seismic Events)

  • 전종수;이도형
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.271-280
    • /
    • 2018
  • This paper presents a framework for developing aftershock fragility curves for reinforced concrete bridges initially damaged by mainshocks. The presented aftershock fragility is a damage-dependent fragility function, which is conditioned on an initial damage state resulting from mainshocks. The presented framework can capture the cumulative damage of as-built bridges due to mainshock-aftershock sequences as well as the reduced vulnerability of bridges repaired with CFRP pier jackets. To achieve this goal, the numerical model of column jackets is firstly presented and then validated using existing experimental data available in literature. A four-span concrete box-girder bridge is selected as a case study to examine the application of the presented framework. The aftershock fragility curves are derived using response data from back-to-back nonlinear dynamic analyses under mainshock-aftershock sequences. The aftershock fragility curves for as-built bridge columns are firstly compared with different levels of initial damage state, and then the post-repair effect of FRP pier jacket is examined through the comparison of aftershock fragility curves for as-built and repaired piers.

Comparison of different codes using fragility analysis of a typical school building in Türkiye: Case study of Bingöl Çeltiksuyu

  • Ibrahim Baran Karasin;Mehmet Emin Oncua
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.235-247
    • /
    • 2023
  • Bingöl, a city in eastern Türkiye, is located at a very close distance to the Karlıova Region which is a junction point of the North Anatolian Fault Zone and Eastern Anatolian Fault Zone. By bilateral step over of North Anatolian Fault Zone and Eastern Anatolian Fault Zone each other there occurred NorthWest-SouthEast extended right-lateral and NorthEast-SouthWest extended left-lateral fault zones. In this paper, a typical school building located in Bingöl Çeltiksuyu was selected as the case study. Information on the school building and Bingöl Earthquake (2003) have been given in the paper. This study aimed to determine the fragility curves of the school building according to HAZUS 2022, Turkish Seismic Codes 1998, 2007 and 2018. These codes have been introduced in terms of damage limits. Incremental dynamic analysis is a parametric analysis method that has recently emerged in several different forms to estimate more thoroughly structural performance under seismic loads. Fragility analysis is commonly using to estimate the damage probability of buildings. Incremental Dynamic Analysis have performed, and 1295 Incremental Dynamic Analysis output was evaluated to obtain fragility curves. 20 different ground motion records have been selected with magnitudes between 5.6M and 7.6M. Scaling factors of these ground motions were selected between 0.1g and 2g. Comparison has been made between HAZUS 2022 and Turkish Seismic Codes 1998, 2007 and 2018 in terms of damage states and how they affected fragility curves. TSC 1998 has more conservative strictions along with TSC 2018 than TSC2007 and HAZUS moderate and extensive damage limits.

일방향 철근 콘크리트 슬래브의 폭발 피해 기준에 대한 실험적 분석 (Experimental Analysis on the Criteria of the Explosion Damage for One-way RC Slabs)

  • 이승재;박종일;이영학;김희식
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.68-74
    • /
    • 2017
  • To predict the damage of Reinforced Concrete (RC) structures from mass explosion, Pressure-Impulse (P-I) curves representing the relationship between peak pressure and impulse based on damage criteria are essential. There are P-I curves developed by the U.S. DoD without detailed explanation regarding validation. In this study, full scale explosion tests were conducted measuring response of RC slab to modify and validate pre-existing P-I curves. Four same RC slabs were prepared, and placed at different distances, which are fixed to steel frame with concrete base. Scaled distances were selected to show different failure types using P-I curve based on Single Degree Of Freedom (SDOF) model. It was found that SDOF model can be used to evaluate and identify one-way RC slab damage with difference damage criteria.

Fragility curves of gravity-load designed RC buildings with regularity in plan

  • Masi, A.;Digrisolo, A.;Manfredi, V.
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.1-27
    • /
    • 2015
  • In this paper Fragility Curves (FCs) relevant to existing RC framed building types representative of the Italian building population designed only to vertical load and regular in-plan have been derived from an extensive campaign of non-linear dynamic analyses. In the generation of the FCs, damage states according to the EMS98 scale have been considered while the intensity measure has been defined by adopting an integral parameter, such as the Housner intensity. FCs have been generated by varying different parameters, including building age, number of storeys, presence and position of infill panels, plan dimensions, external beams stiffness and concrete strength. In order to verify the effectiveness of the damage prediction, comparisons were made between the results obtained from the proposed FCs with those deriving from both prominent fragility studies available in the technical literature and damage distributions observed in past earthquakes. Results show that damage grades obtained by adopting the proposed FCs are generally lower than those provided by the other approaches considered. A comparison with real damage data, shows that the proposed FCs generally estimate more severe damage distributions than those observed in past earthquakes, although they give lower differences with respect to the other approaches.

Seismic vulnerability assessment of confined masonry wall buildings

  • Ranjbaran, Fariman;Hosseini, Mahmood
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.201-216
    • /
    • 2014
  • In this paper the vulnerability of the confined masonry buildings is evaluated analytically. The proposed approach includes the nonlinear dynamic analysis of the two-story confined masonry buildings with common plan as a reference structure. In this approach the damage level is calculated based on the probability of exceedance of loss vs a specified ground motion in the form of fragility curves. The fragility curves of confined masonry wall buildings are presented in two levels of limit states corresponding to elastic and maximum strength versus PGA based on analytical method. In this regard the randomness of parameters indicating the characteristics of the building structure as well as ground motion is considered as likely uncertainties. In order to develop the analytical fragility curves the proposed analytical models of confined masonry walls in a previous investigation of the authors, are used to specify the damage indices and responses of the structure. In order to obtain damage indices a series of pushover analyses are performed, and to identify the seismic demand a series of nonlinear dynamic analysis are conducted. Finally by considering various mechanical and geometric parameters of masonry walls and numerous accelerograms, the fragility curves with assuming a log normal distribution of data are derived based on capacity and demand of building structures in a probabilistic approach.