• Title/Summary/Keyword: Damage Assessment

Search Result 1,973, Processing Time 0.03 seconds

The Effect of Obstacles in a Compartment on Personnel Injury Caused by Blast (격실 내 장애물이 폭압에 의한 인원 피해에 미치는 영향)

  • Park, Sung-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • Blast injuries in a compartment are investigated, and the effects of obstacles on blast injury are particularly analyzed by comparing injuries in the compartments with or without protruding obstacles inside. Even if blast pressure profile tends to be complicated in a confined space unlike in open field, it can be obtained in a relatively short time by using some empirical fast running models for simple confined spaces. However, a finite element method should be employed to obtain blast pressure profiles in a case with obstacles in confined spaces, because the obstacles heavily disturb blast waves. On the other hand, Axelsson SDOF(Single degree of freedom) model and ASII(Adjusted severity of injury index) injury level are employed to estimate blast injury in compartments, because the usual pressure-impulse injury criterion based on the ideal Friedlander waves in open the field cannot be applied to personnel in a confined space due to complexity of blast waves inside. In cases with obstacles, chest wall velocity was reduced by 26 to 76 percent(%) and the personnel injury in the compartment caused by blast was also reduced.

A Case Report of a Patient with Mild Cognitive Impairment Treated with Gugijihwang-tang (구기지황탕 투여 후 호전된 경도인지장애 환자 1례에 대한 증례보고)

  • Park, Mi-so;Kang, Seock-man;Yoo, Dai-won;Chae, In-cheol;Kim, Gyeong-soon;Seong, Hyun-joo;Chung, Kwang-yeol;Yoo, Ho-ryong
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.5
    • /
    • pp.1082-1093
    • /
    • 2021
  • Objective: Alzheimer's disease is characterized by progressive, irreversible brain damage and cognitive decline. Although the diagnosis and treatment of the prodromal symptoms of dementia are important, no treatment for mild cognitive impairment has been currently established. Herein, we report the case of an 80-year-old female patient with memory complaints treated with Gugijihwang-tang, a traditional Korean medicine herbal formula, as an add-on medication. Case Presentation: The patient was diagnosed with mild cognitive impairment based on clinical examinations using the Mini-Mental State Examination (MMSE), the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Activities of Daily Living (ADL) Scale, Global Deterioration (GDR) Scale, and Clinical Dementia Rating (CDR) Scale. She was treated with Gugijihwang-tang bis in die for 12 months while continuing her original medications, including 5-mg donepezil and 590-mg acetyl-l-carnitine. The MMSE score in the Korean Version of the CERAD Assessment Packet increased from 21 to 27 during the 12-month treatment period, and the CERAD 2 score increased from 33 to 62. The instrumental ADL scale score improved from 11 to 5. Other clinical examination results also showed improvement. The patient was satisfied and experienced no significant adverse events related to the Gugijihwang-tang treatment. Conclusion: This case suggests that Gugijihwang-tang could be considered as a treatment method for patients with mild cognitive impairment.

Assessment Level of Safe and Maintenance Based on Safety Inspection Data of Small Vulnerable Facilities in Domestic (국내 소규모취약시설 안전점검 데이터기반 안전 및 유지관리 수준 평가)

  • Kim, Min-Su;Lee, Jeong-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.121-130
    • /
    • 2021
  • Recently, the need for new approaches and recognition of safety and maintenance has been raised for small vulnerable facilities in Korea due to the acceleration of aging facilities, various safety accidents, and increased frequency of use. In particular, small vulnerable facilities(SVF), including most social welfare facilities, are facilities used by many of the vulnerable groups, and safety management is very important. Therefore, this study investigated various statuses based on safety inspection results (31,114 cases) conducted over the past 13 years (2008-2020) for small vulnerable facilities in Korea, and evaluated the characteristics of each field and safety and maintenance performance level. This aims to present policy directions for strengthening safety management of facilities for the vulnerable by using basic data such as improvement of safety standards and maintenance strategies for small vulnerable facilities in Korea in the future.

Growing pigs developed different types of diabetes induced by streptozotocin depending on their transcription factor 7-like 2 gene polymorphisms

  • Tu, Ching-Fu;Hsu, Chi-Yun;Lee, Meng-Hwan;Jiang, Bo-Hui;Guo, Shyh-Forng;Lin, Chai-Ching;Yang, Tien-Shuh
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • The different polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene promote variances in diabetes susceptibility in humans. We investigated whether these genotypes also promote differences in diabetic susceptibility in commercial pigs. Growing pigs (Landrace, both sex, 50-60 kg) with the C/C (n=4) and T/T (n=5) TCF7L2 genotypes were identified and intravenously injected with streptozotocin (STZ, 40 mg/kg) twice in weekly intervals, then a high-energy diet was offered. Oral glucose tolerance tests, blood analyses and the homeostasis model assessment-insulin resistance (HOMA-IR) index calculations were performed. The animals were sacrificed at the end of 12 weeks of treatment to reveal the pancreas histomorphometry. The results showed that all of the treated pigs grew normally despite exhibiting hyperglycemia at two weeks after the induction. The glycemic level of the fasting or postprandial pigs gradually returned to normal. The fasting insulin concentration was significantly decreased for the T/T carriers but not for the C/C carriers, and the resulting HOMA-IR index was significantly increased for the C/C genotype, indicating that the models of insulin dependence and resistance were respectively developed by T/T and C/C carriers. The histopathological results illustrated a significant reduction in the pancreas mass and insulin active sites, which suggested increased damage. The results obtained here could not be compared with previous studies because the TCF7L2 background has not been reported. Growing pigs may be an excellent model for diabetic in children if the animals are genetically pre-selected.

Safety Evaluation of Net-type Debris Flow Protection System Using Numerical Analysis (수치해석을 이용한 네트형 토석류 방호시스템의 안전성 평가)

  • Lee, Eung-Beom;Lim, Hyun-Taek;Whang, Dae-Won;Lim, Chang-Su;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.157-168
    • /
    • 2018
  • Recently, the occurrence of typhoons and heavy rainfall is increasing due to climate change. This causes increase in possibility of landslide damages in rural areas. However, in reality, the precise engineering stability assessment studies are still insufficient. Therefore, in order to reduce the landslide damages and effectively manage mountainous areas, the development of disaster prevention techniques is needed. In this study, to analyze the shock absorbing effect of the buffer-spring during application of dynamic impact load in the debris flow protection system, numerical analysis is carried out for each free field of the buffer-spring and the load sharing ratio of the buffer-spring is also examined. In addition, the field applicability is verified by comparison of the tensile strength of the conventional buffer-spring and the wedge type buffer-spring on various magnitudes of dynamic impact load. As a result of the study, it is found that the net-type debris protection system is effective to mitigate loss of properties and human lifes during landslide.

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Safety Effect Evaluation of Existing Metro Tunnel by Deep Urban Tunnelling (대심도 도심지 터널시공에 의한 기존 지하철 터널 안전영향 평가)

  • Han, Sang-Min;Lee, Dong-Hyuk;Lee, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.37-50
    • /
    • 2021
  • Recently, due to the expansion of urban infrastructure using underground spaces in urban areas, many adjacent constructions and excavations have been made carried out between existing facilities, and complaints related to the stability of existing facilities due to close construction have become significant issues. In this study, it was closely reviewed for the existing metro tunnel structure in the new Dongbuk urban metro railway to determine the behavioral characteristics of tunnel structure according to adjacent tunnel construction. Also, it was analysed the evaluation of the safety zone and excavation method for metro tunnel structure. And after a detailed damage assessment, track irregularities and structural calculation by using a numerical analysis, stability of the metro tunnel structure according to nearby tunnel excavation was evaluated to be secured for safety. This study is expected to be applied as practical reference to review the evaluation of safety effects of existing tunnel structure and buildings according to adjacent construction in complex deep urban tunnelling.

Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism

  • Ju, Sunghee;Seo, Ji Yeon;Lee, Seung Kwon;Oh, Jisun;Kim, Jong-Sang
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.108-118
    • /
    • 2021
  • Background: Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be metabolized to a biologically active substance, compound K. Previous research showed that compound K could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable level of compound K has cognitive improving and neuroprotective effects. Methods: A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains were collected, histologically examined (hematoxylin and eosin staining), and the expressions of antioxidant proteins analyzed by western blot. Results: Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg body weight reversed scopolamine-induced learning and memory deficits. Histological examination demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hippocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity by decreasing the intracellular levels of reactive oxygen species. Conclusion: These findings suggest that HRGE administration can effectively alleviate hippocampus-mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.