• Title/Summary/Keyword: Dam failure

Search Result 155, Processing Time 0.03 seconds

Seismic Failure Probability of the Korean Disaster Risk Fill Dams Estimated by Considering Freeboard Only (여유고만으로 추정된 국내 재해위험 저수지의 지진시 파괴확률)

  • Ha, Ik Soo;Lee, Soo Gwun;Lim, Jeong Yeul;Jung, Young Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.451-461
    • /
    • 2016
  • The objective of this study is to illustrate the methods and procedures for estimating the failure probability of small fill dams subjected to earthquake events and to estimate the seismic failure probability of the Korean disaster risk fill dams where geotechnical information is not available. In this study, first of all, seismic failure probabilities of 7 disaster risk small fill dams, where geotechnical information is available, were evaluated using event tree analysis. Also, the methods and procedures for evaluating probabilities are illustrated. The relationship between dam height and freeboard for 84 disaster risk small dams, for which the safety diagnosis reports are available, was examined. This relationship was associated with the failure computation equation contained in the toolbox of US Army corps of engineers. From this association, the dam height-freeborard critical curve, which represents 'zero' failure probability, was derived. The seismic failure probability of the Korean disaster risk fill dams was estimated using the critical curve and the failure probabilities computed for 7 small dams.

Kinematical Element Method를 이용한 Carsington Dam의 안정해석

  • 이상덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.62-74
    • /
    • 1991
  • The stability of the Carsington dam at Derbyshire in middle Eng1and is analysed using the Kinematical Element Method (Program LSDKSLOP). The thin yellow clay layer and the pore pressure at the failure surface, which goes through the core and boot, are considered. The influence of the pre-existing shears of the yellow clay on the stability of the Carsington dam is studied. Comparisons with the calculated and the observed failure surface are presented.

  • PDF

Evaluation of dam strength by finite element analysis

  • Papaleontiou, Chryssis G.;Tassoulas, John L.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.457-471
    • /
    • 2012
  • Current code procedures for stress and stability analysis of new and existing concrete-gravity dams are primarily based on conventional methods of analysis. Such methods can be applied in a straightforward manner but there has been evidence that they may be inaccurate or, possibly, not conservative. This paper presents finite element modeling and analysis procedures and makes recommendations for local failure criteria at the dam-rock interface aimed at predicting more accurately the behavior of dams under hydraulic and anchoring loads.

A Proposal of Seismic Failure Probability Estimation Chart of the Korean Small and Medium Sized Earthfill Dams (국내 중소규모 흙댐의 지진 시 파괴확률 산정 도표 제안)

  • Ha, Iksoo;Lee, Soogwun;Kim, Namryong;Lim, Jeongyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • The purpose of this study is to propose a chart that can easily estimate the seismic failure probability of small and medium sized earthfill dams with little geotechnical information. By considering the existing method and procedure for estimating the seismic failure probability of a dam, the zero seismic failure probability curve, on which the seismic probability is zero regardless of the geotechnical properties of the dam, was determined in the form of hyperbola in the dam height and freeboard ratio plane. It was confirmed that the dam height-freeboard ratio distribution pattern of the Korean small and medium sized dams was shaped like a hyperbola like the zero seismic failure probability curve. Therefore, a estimation chart was constructed in which a number of seismic failure probability contours are represented by a number of hyperbolas at regular intervals in the dam height-freeboard ratio plane. The proposed chart was applied to the calculation of the seismic failure probability of two small and midium sized dams with relatively well-managed geotechnical properties and the validity of the chart was confirmed by comparison with the results obtained by the existing procedures and methods. In the future, the proposed chart is expected to be useful in considering investment priorities for maintenance and reinforcement of small and medium sized dams in preparation for earthquakes.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

A Numerical Simulation for the Dam-Break Wave from the Hypothetical Failure of Soyanggang Dam (소양강댐 가상 파괴파의 수치모의)

  • Lee, Sang Ho;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.109-122
    • /
    • 1992
  • With the uncertainty of breaching mechanism, channel roughness, and elevation-discharge relationship at the downstream dam sites, the dam break wave from the hypothetical failure of Soyanggang dam is routed by DAMBRK. Simulation results show that lower region of Seoul will be flooded in 6~8 hours which has the elevation lower than 30~20m, and most part of Chuncheon will also be flooded. The peak discharge becomes approximately 70,000 CMS at Indogyo, and 220,000~340,000 CMS at Chuncheon. Sensitivity analysis shows that the inundation feature of Seoul will hardly be affected by the failure of downstream dams.

  • PDF

A Study for Landslides of Chungju Dam Right Abutment (충주(忠州)댐 우안(右岸) 산사태(山沙汰)에 관한 연구(硏究))

  • Choi, Young Jin;Song, Moo Young
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.309-318
    • /
    • 1991
  • Analysis for landslides was studied in framework of Chungju dam right abutment, 6.5km northeast of Chungju city. $5.5{\times}10^6m^3$ landslide materials were excavated during dam construction for safety of the Chungju dam. Geology of study area is composed mainly of meta sediments such as dolomitic limestone, quartzite and schist which are dipping toward the Nam Han river. Scanline survey of discontinuities was performed for slope stability, resistivity exploration was performed for the evaluation of potential failure plane, and direct shear strength test of rocks and soils was performed for the effect on landslide. Monitoring systems of tiltmeter, tensiometer, ground water observation hole and level monument were installed during dam construction and interpreted for the evaluation of slope instability. Kinematic solution of the geological structure and evaluation using safety factor for slope may prove the failure of the slope.

  • PDF

Application of Risk Analysis for Dam Safety Assessment (댐의 안전성 평가를 위한 위험도 해석기법의 적용)

  • Lee, Jong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.651-664
    • /
    • 2002
  • The main purposes of dam safety assessment are to predict risk of an existing dam and to reduce the identified risks reasonably. This study determined the risks of an existing dam for each different dam breach scenario using risk analysis. In addition, the application of risk analysis in the dam safety assessment made possible to compare and evaluate a variety of alternatives that may reduce risk of an existing dam with respect to the possibility of dam failure and economic efficiency, On the ground of the risk analysis results, the dam safety analysts can obtain better understanding and more information regarding the risk of and existing dam and recommended alternatives. Decision-makers will be able to manage risk of an existing dam efficiently by spending their affordable money and resources on the alternatives that are expected to reduce the risk of an existing dam practically.

Risk factor analysis for failure characteristics of fill dam (필댐 파괴 특성에 따른 위험 요소 분석)

  • Lim, Jeong-Yeul;Oh, Seok-Hoon;Jang, Bong-Seok;Kim, Bum-Joo;Lim, Eun-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.794-799
    • /
    • 2006
  • For various historical reasons and some technical reasons, the safety of dams has been controlled by an engineering standards-based approach, which has developed over many years, initially for the design of new dams, but increasingly applied over the past few decades to assess the safety of existing dams. And some countries were asked for risk assessment on existing dam, which included structural, hydraulic safety of dam and social risk. So, Many countries were developed and could be adapted as an additional tool to assist in decision-making for dam safety management.

  • PDF

Numerical Simulation of the Floodwave Analysis Resulting from Dam Failure - Flood on Dry Bed from Instantaneous Dam-Break- (댐의 파괴형태와 하도부 양상에 따른 홍수파의 전달특성 해석에 관한 연구 - 급격한 댐 파괴와 마른하도를 중심으로 -)

  • 한건윤
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.467-476
    • /
    • 1990
  • Numerical model for the floodwave propagation on dry bed which is resulting from the instantaneous failure of a dam has been developed by moving Hartree scheme. The numerical simulation result of the model has good agreements with the observed data by WES in terms of stage hydrograph and characteristics profiled. The model would contribute effectively to forecast the flood on dry bed resulting from instantaneous dam-break.

  • PDF