• Title/Summary/Keyword: Dam Body

Search Result 247, Processing Time 0.024 seconds

Estimation of the Heritabilities and Genetic Correlations on Body Shape Components in Korean Native Chicken (한국재래계의 체형에 대한 유전력 및 유전상관의 추정)

  • 한성욱;상병찬;이준현;정욱수;상병돈
    • Korean Journal of Poultry Science
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • This study was carried out to get the basic and applicable data for breeding plan and selection in order to improve the body shape components in Korean native chicken. The hentabilities and genetic correlations on body shape components were estimated by sire, dam and combined components of variance. Data analyzed were records of 1,096 progenies produced from 180 dams and 26 sires from April, 1994 to September, 1995. On body shape components at 4, 8 and 16 weeks of age, the shank lengths were 55.63, 82.94 and 103.8Omm: breast girths were 15.087, 21.069, and 26.137mm: breast widths were 40.910, 54.575 and 73.088mm, respectively. The estimates of hentabilities of body shape components based on the variance of sires, dams, and combined components at 4, 8 and 16 weeks of age were O.O65~O.197, O.25O~O.794 and O.185~O.495 for shank length: O.123~O. 215, O.033~O.513 and 0.063~0.257 for breast girth; 0.024~0.158, 0.118~0.410 and 0.111~0.222 for breast width, respectively. The coefficients of genetic correlations among the body shape components at 4 weeks of age were 0.565, 0.725 and 0.678 for breast girth with breast width, shank length and tibia length : 0.690 and 0.804 for breast width with shank length and tibia length; 0.972 between shank length and tibia length.

  • PDF

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

The Evaluation of Pollutant Removal Efficiencies by Sedimentation Basin Types constructed at the Inlets of Irrigation Reservoirs (농업용 저수지 내 침강지의 설치유형에 따른 수질정화효율 평가)

  • Jang, Jeong-Ryeol;Choi, Sun-Hwa;Nam, Gui-Sook;Kwun, Soon-Kuk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.665-674
    • /
    • 2005
  • The aim of this study is to evaluate 3 types of sedimentation basins: dredging, shield skirt and auxiliary dam, constructed at inlets of two irrigation reservoir and to estimate the most beneficial type and fitted size, SAR(surface to area ratio), for pollutant removal efficiency(RE). For this, RE of major water quality items and change of physicochemical properties in sediments before and post construction of sedimentation basin(SB) were investigated. RE depended on SB types, water quality items and survey times with wide range from $-87\%$ to $92\%$. Long term overall removal efficiency by ROC(regression of concentration) method were $18\%$ in dredging, $29\%$ in shield skirt and $42\%$ in auxiliary dam type. There was a change of physicochemical properties in sediments at auxiliary dam type, while a slight change at dredging and shield skirt type. In comparison to RE, SAR and hydraulic retention time at 3 types of SB, auxiliary dam type was the most beneficial one. Thus, it is recommended that SB would be constructed in completely separated structure from water body of a reservoir with SAR ranged from 0.7 to $1.0\%.$

Freshwater Fish Utilization of Fishway Installed in the Jangheung Dam (장흥댐에 설치되어 있는 어도와 담수어류의 이용 분석)

  • Yoon, Ju-Duk;Kim, Jeong-Hui;Joo, Gea-Jae;Seo, Jin-Won;Pak, Hubert;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.264-271
    • /
    • 2011
  • At the Jangheung multipurpose dam, which is on the Tamjin River, a trapping and trucking operation was established to maintain continuous upstream migration of fish,. To facilitate fish gathering, installation of an effective fishing trap was required. In this study, we evaluated the fish trap, established at the Jangheung dam, using PIT (Passive Integrated Transponder) telemetry. A total of 254 individuals from 15 species were monitored. Among these tagged species, 36 individuals from 6 species (Carassius auratus, C. cuvieri, Zacco temminckii, Z. platypus, Pungtungia herzi, and Pseudobagrus koreanus) were detected; a 14.2% detection rate. C. auratus recorded the highest detection rate of 44.2% while P. herzi was 14.3%. Z. temminckii and Z. platypus showed relatively low detection, 5% and 7.7% respectively. Some of individuals from C. auratus and Z. platypus did not pass through the antenna at the first attempt but were continuously detected on multiple days. There were no statistical differences in body size (total length, standard length and body weight) of individuals that did or did not swim into the trap (Mann-Whitney U test, p>0.05). Fish mainly swam into the trap during outflow of water from the dam (Mann-Whitney U test, p<0.001) and showed a higher detection frequency in daytime than nighttime (Mann-Whitney U test, p<0.001). Thus, for fish movement into the trap, external factors such as outflow from dam and time of day have important roles. Based on detection rate, not all fishes showed upstream migration but represented selective migration. Consequently, the establishment of flexible outflow strategies that take into consideration ecological characteristics of fishes should required for improving the efficiency of fishway.

An Experimental Study on Overflow and Internal Erosion Protection Technology of a Reservoir (저수지 제체월류 및 내부침식 보호기술 모형실험 연구)

  • Jin, Ji-Huan;Lee, Tae-Ho;Yoo, Jeon-Yong;Im, Eun-Sang;Lee, Seung-Joo;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2019
  • Most of the reservoirs in South Korea are fill dam, and overflow and piping phenomena have been detected as the main causes of failure of fill dam. In this study, an operating ◯◯ reservoir located in Gongju-si is modeled in centrifuge model test to study the behavior of reservoir during water level rise and overflow conditions. In order to simulate seepage and overflow in the real reservoir, the model was constructed in 1/50 scale, and deteriorated and reinforced conduits were installed. After modeling the reinforced and deteriorated conditions of the conduits, LVDTs, pore pressure gauges were installed and centrifuge model tests were carried out with water level rise and overflow conditions in order to analyze the reservoir behavior according to the reinforcement methods. The results of centrifuge model test in water level rise condition show that deteriorated conduit has adverse effects in the stability of the reservoir body, and the conduit which is reinforced by the inverse lining method has enhanced stability of the reservoir body. Moreover, installation of water spillway is seen to prevent the scour and erosion of the reservoir body. The study provides a basic data required for the reinforcement of conduit and water spillway in the reservoir.

Estimation of reclaimed stone body by combined geophysical methods (정밀 물리탐사 병합기술에 의한 사석 투하량 조사)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.491-498
    • /
    • 2004
  • In recent years, as an effort to grasp the leading position in the field of maritime trading, new ports and container terminals arc now under construction. Old ports are extended. At the beginning, stones were thrown down to form stone embankments, that is stone-dams, in the outer and inner boundaries of the planned reclamation-land. S.C.P(Sand Compaction Pile) works are often needed to improve the stability of stone-dams, where marine sediments arc relatively thick. Here, interests are centered on the shape of stone body. In this, drilling work won't provide a sufficient resolution. In addition, the result corresponds to only one borehole point information. Thus, the aim of this paper is to introduce an affordable technology, that is, a combined geophysical method(seismic tomography + Televiewer) enables to get the whole information about stone-dam section. The measuring and evaluating procedure is described in detail with an emphasis on dealing with the use of seismic detonator, proper borehole deployment and integrated data analysis. Examples of field experiments at Busan new port are illustrated, which will prove the benefit of combined geophysical method.

  • PDF

The Relationship between Algae Transport and Current in the Daecheong Reservoir (대청호 유속에 따른 조류이동 영향)

  • Yu, Soon-Ju;Hwang, Jong-Yeon;Chae, Min-Hi;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.887-894
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom every year. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir during the wet season. Nutrients from diffuse sources trigger the propagation of the algal bloom. This study is aimed to analyze relationship between the water current by the simulation and algae transport from the main body in the Daecheong reservoir including tributary where algal bloom has occurred seriously every year. Water quality model CE-QUAL-W2 was applied to analyze water movement in draught season (2001) and flooding season (2003). The result of simulation corresponded with the observed water elevation level, 63~80 m and showed stratification of the Daecheong reservoir. In the draught season, as velocity and direction off low in the reservoir was estimated to affect algae transport including nutrient supply from small tributary, algal blooms occurred in the stagnate zone of middle stream of the reservoir. On the other hand, in the flooding season, it was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. In result, algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control.

Analysis of Behavior of Agricultural Reservoir with Combined Load by 3-D Numerical Analysis (3차원 수치해석을 통한 복합하중이 작용하는 농업용저수지의 거동 분석)

  • Song, Chang Seob;Woo, jea keun;Ahn, kwangkuk;Kim, Myeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • The object of this paper was to analyze combined load acting on agricultural reservoir. This study was carried out to 3-D numerical modeling for displacement characteristic and seismic acceleration characteristic. The results of study were analyzed and summarized as follow. It was found that the displacement caused by combined load acting on railway and agricultural reservoir did not reflect the effect of load and the seismic wave consistently. The ground accelerations that occur in railway and dam were amplified because 3-D numerical analysis program interprets ground as an elastic body. Actual ground shows characteristics of elasticity and plasticity, so measured values will show different tendency. As a result of analyzing displacement characteristics, it is considered to be related to stiffness. The Ofunato seismic wave, the displacement (77.1 mm) of the body satisfied the allowable displacement (220 mm), but The Hachinohe seismic wave (282.8 mm) did not. It is considered that displacement caused by combined load is affected not only by acceleration but also by characteristics of materials.

A Study on Formation and Concentration of Trihalomethanes in Water Treatment Process (정수처리공정의 THMs 생성과 농도변화에 관한 연구)

  • 조덕희;안승구
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 1997
  • This study was carried out to investigate the effects of prechlorination and algae growth on THMs generation. The sample water obtained from Paldang Dam which is a main source of raw water for the Seoul metropolitan area. THMs concentration in the sample water was investigated in water treatment process prechlorifiation, chemical coagulation, and sand filtration. And also, THMs concentration were analyzed in the water which cultured algae in laboratory. The results were as follows 1. The THMs concentration produced by prechlorination unit process were increased in control (not purified) but decreased in process of purification. 2. The THMs concertration can reduce by increasing the number of cleaning filters. 3. The main precursor in raw water for the THMs generation was supplied by algae growth. So as to reduce the THMs concentration in water supplying system, it is the best method to manage algae growth in water body of Paldang reservoir.

  • PDF

Cause Analysis of Dam Body piping Failure -Centering on the Example of Seungam Reservoir Failure- (제당 PIPING 결궤 원인분석 - 성암제 붕괴 중심으로 -)

  • Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-350
    • /
    • 2001
  • Piping is a phenomenon where seeping water progressively erodes or washes away soil particles, leaving large voids (Pipes led to the development of channels) in the soil. Piping failure caused by heave can be expected to occur on the downstream side of a hydraulic structure such as fill dams when the uplift forces of seepage exceed the downward forces due to the submerged weight of the soil. The way to prevent erosion and piping and to reduce damaging uplift pressures is to use a protective filter or to construct cutoff wall/imperious blanket. Therefore, all the hydraulic structures faced/with soil materials should be taken the safety against piping into consideration.

  • PDF