• Title/Summary/Keyword: Dam

Search Result 4,278, Processing Time 0.028 seconds

Dilemma of a small dam with large basin area under climate change condition

  • Jeong-Hyeok Ma;Chulsang Yoo;Tae-Sup Yun;Dongwhi Jung
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.559-572
    • /
    • 2024
  • Problems of under-sized dams (small dams with large basin area) could get worse under the global warming condition. This study evaluates the possible change of these problems with the Namgang Dam, an under-sized dam in Korea. For this purpose, first, this study simulates the dam inflow data using a rainfall-runoff model, which are then used as input for the reservoir operation. As a result, daily dam storage, dam release, and dam water supply are derived and compared for both past observed period (1973~2022) and future simulated period (2006~2099) based on the global warming scenarios. Summarizing the results are as follows. First, the inflow rate in the future is expected to be increased significantly. The maximum inflow could be twice of that observed in the past. As a result, it is also expected that the frequency of the water level reaching the high level is increasing. Also, the amount and frequency of dam release are to be increased in the future period. More seriously, this increase is expected to be concentrated on rather extreme cases with large dam release volume. Simply, the condition for flood protection in the downstream of the Namgang Dam is becoming worse and worse. Ironically, the severity of water shortage problem is also expected to become much worse. As the most extreme case, the frequency of no water supply was zero in the observed period, but in the future period, it becomes once every five years. Both the maximum consecutive shortage days and the total shortage volume are expected to become more than twice in the future period. To prevent or mitigate this coming problem of an under-sized dam, the only countermeasure at this moment seems to be its redevelopment. Simply a bigger dam with larger dam reservoir can handle this adverse effect more easily.

The Evaluation for Stability at Joint Part in Composition Dam (복합댐 접합부의 안정성 평가)

  • Kim, Jae-Hong;Oh, Byung-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.155-166
    • /
    • 2008
  • Research dam is consisted of concrete gravity dam that right bank department is built to concrete material, left bank department is composition dam that is consisted of rockfill dam that consist of rockfill material In domestic case, composition dam form of storage of water facilities of about 17,000 does not exist hardly in dam of irrigation water industry drinking water purpose that manage local government or other institution, Even if exist, is real condition that there is total nonexistence administrator fare of facilities, Choose unique dam of domestic multipurpose dam and analyzed conduct special quality of con'c gravity dam and rockfill dam joint part To analyze dynamic conduct special quality of composition dam by analytic method in this research, Do modelling via axis of dam and achieved static(Psuedo-static, modify Psuedo-static) and dynamic analysis, When achieving earthquake response analysis, analyzed seismic response analysis between concrete part and rockfill's part.

Effect of Yongdam Dam Operation to Level of Reference Flows Downstream (용담댐 운영이 하류 기준유량 설정에 미치는 영향)

  • Noh, Jae-Kyoung;Yoo, Jae-Min;Oh, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1772-1776
    • /
    • 2006
  • The Ministry of Environment is determining reference flows and goal water qualities in many stations over all around riverbasin to control TMDL. Reference flow is now defined to 10 years averaged 275th minimum flow$(Q_{275})$. Dam operation takes direct effect on flows downstream. The Yongdam mutipurposed dam was constructed in 2002 and TMDL managing stations between the Daecheong dam and the Yongdam dam are the Geumbon B, C, D, E, and F in main stream of the Geum river. Geumbon F is the Daecheong dam site. Observed flows are ideal to be used to set reference flows, but simulated flows are more practical to be used to set reference flows from the cause of the Yongdam dam's operation. A system for simulating daily storages of the Yongdam dam was constructed and the DAWAST model was selected to simulate daily streamflows. Analysis period was selected for 10 years from 1996 to 2005. Scenario was set as follows; Firstly, observed outflows from the Yongdam dam are used from 2002 to 2005 and the Yongdam dam does not exist from 1995 to 2001. Secondly, the Yongdam dam existed also from 1995 to 2001 and simulated outflows from the Yongdam dam are used from 1996 to 2005 with provision of constant outflow of $7.0m^3/s$ and water supply to the Jeonju region outsided watershed of $900,000m^3/day$. In case of scenario 1 reference flows at the Geumbon B, C, D, E, F are 4.52, 6.69, 7.96, 11.17, and $13.21m^3/s$, respectively. And in case of scenario 2 reference flows at the Geumbon B, C, D, E, F are 6.27, 8.48, 9.58, 12.73, and $15.12m^3/s$, respectively.

  • PDF

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Development of design mix roller compacted concrete dam at Middle Vaitarana

  • Ashtankar, V.B.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.125-144
    • /
    • 2014
  • The development in roller compacted concrete (RCC) is replacing the conventionally vibrated concrete (CVC) for faster construction of dam during last three-four decades. Notwithstanding, there have been relatively less works reported on the utilization of RCC in dam constructions, especially the dams having considerable height. Further, the Ghatgar dam was the only dam in the tropical country like India constructed using the technology of RCC until two years back. However, with the completion of 102.4 m high Middle Vaitarana Dam (MVD), owned by Muncipal Corporation of Greater Mumbai (MCGM), India, has become the first largest roller compacted concrete dam. The paper traces step by step aspects of the mix design of RCC in respect of the afore-mentioned project besides the construction aspects; and also, demonstrates as to how 12.15 lacs cubic meter of roller compacted concrete was placed within the record duration of 15.2 months, thus, rendering the MVD as the ninth fastest RCC dam in the world. The paper also discusses the various mix proportioning, quality control, constructional features and instrumentation with respect to the high RCC dam such as Middle Vaitarana.

Effect analysis by time passage after Repair & Reinforcement of Fill Dams (필댐 보수보강후 시간경과에 따른 효과 분석)

  • Kim, Jae-Hong;Oh, Byung-Hyun;Im, En-sang;Hong, Won-Pho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.697-703
    • /
    • 2008
  • Excessive water leakage phenomenon happens through damage of nation core zone of about 17,000 storage of water facilities or collapse of dam is worried, is being damaged or enforce dilapidated fill dam core zone's repair reinforcement. Example that use grouting method of construction considering construction and economic performance etc. recently by repair reinforcement way about defect of dam is increased. Permeation grouting method repair & reinforcement of fill dam countermeasure is preferred in nation. Do that is economical to decide these repair reinforcement effect and grouting effect estimation method that do not give damage to dam is effective. Therefore, observing electricity resistivity Survey change of dam since grouting reinforcement using Electric resistivity Survey inquiry of seismic survey method in this research, Wished to verify grouting effect whether is possible as Electric resistivity Survey, and study whether integrity of dam through repair reinforcement defined.

  • PDF

Evaluating stability of dam foundations by borehole and surface survey using Step Frequency Radar

  • Jha Prakash C.;Balasubramaniam V. R.;Nelliat Sandeep;Sivaram Y. V.;Gupta R. N.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.328-334
    • /
    • 2003
  • Evaluating stability of dam foundations is one of the prime areas of any rock engineering investigations. Despite best engineering efforts in the design and construction of dam foundations, the foundation regime of a constructed dam suffers deterioration due to continuous erosion from backwater current of dam discharge and dynamic effects of loading and unloading process. Even during construction, development of frequent cracks due to sudden thermal cooling of concrete blocks is not uncommon. This paper presents two case studies from India and Bhutan. In the first case, the back current of water discharge from the Srisailam dam in India had continuously eroded the apron and has eaten into the dam foundation. In the second case with dam construction at Tala Hydroelectric Project in Bhutan, sudden overflow of river during the construction stage of dam had led to development of three major cracks across the dam blocks. This was ascribed to adiabatic cooling effect of concrete blocks overlain by chilled water flow. Non-destructive evaluation of rock mass condition in the defect regime by the borehole GPR survey helped in arriving at the crux so as to formulate appropriate restoration plan.

  • PDF

A Study on Model Test for Spilway of Fill Dam (Fill Dam의 방수로모형실험에 관한 고찰)

  • 강병익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.4
    • /
    • pp.2090-2123
    • /
    • 1970
  • This paper is a report on the research of experimental model test of Andong Fill Dam, which has been planned by the Government of Korea as a project, of its over-flowing capacity in spillway, creation of minus pressure and structure of anti-water impulse in over-flow weir. Andong Fill Dam is one of the project of master development plant for water resources, locating at Nakdong River side of Korea, and is aimed to have a multi-purpose dam for flood-control, irrigation, water power, urban and industrial water supply. This dam is planned to erect in fill-dam type due to the improper soil foundation and condition for concrete dam. The refore for the proper and advantageous points, this is designed as center core fill dam. By a model minimized of Andong Fill Dam, held an experimental model test on water quentity of reservir, discharges of overflow part, low pressure and anti-water impulse of overflow part, which was conducted an experiment by flowing aspects through each section of spillway to find the changes of water pressure and that of water level, and corrected the section of each part in order to conduct a check on the creation of minus pressure not to be over acted to the allowable bundary of the section structure; and for the prevention of concentated scouring at the down stream side of flow.

  • PDF

Seismic response of concrete gravity dam-ice covered reservoir-foundation interaction systems

  • Haciefendioglu, K.;Bayraktar, A.;Turker, T.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.499-511
    • /
    • 2010
  • This paper examines the ice cover effects on the seismic response of concrete gravity dam-reservoir-foundation interaction systems subjected to a horizontal earthquake ground motion. ANSYS program is used for finite element modeling and analyzing the ice-dam-reservoir-foundation interaction system. The ice-dam-reservoir interaction system is considered by using the Lagrangian (displacementbased) fluid and solid-quadrilateral-isoparametric finite elements. The Sariyar concrete gravity dam in Turkey is selected as a numerical application. The east-west component of Erzincan earthquake, which occurred on 13 March 1992 in Erzincan, Turkey, is selected for the earthquake analysis of the dam. Dynamic analyses of the dam-reservoir-foundation interaction system are performed with and without ice cover separately. Parametric studies are done to show the effects of the variation of the length, thickness, elasticity modulus and density of the ice-cover on the seismic response of the dam. It is observed that the variations of the length, thickness, and elasticity modulus of the ice-cover influence the displacements and stresses of the coupled system considerably. Also, the variation of the density of the ice-cover cannot produce important effects on the seismic response of the dam.