• Title/Summary/Keyword: Daily rainfall

Search Result 528, Processing Time 0.028 seconds

A Study on the Estimation Methods of Nonpoint Pollutant Unit Load - Focus on Nonpoint Pollutant Unit Load in Paddy Field - (비점오염 발생 원단위 산정방법에 대한 고찰 - 논 비점오염 원단위를 중심으로 -)

  • Choi, DongHo;Choi, Soon-Kun;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung Chang;Yeob, So-Jin;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In order to preserve water environment, Total Maximum Daily Load(TMDL) is used to manage the total amount of pollutant from various sources, and the annual average load of source is calculated by the unit load method. Determination of the unit load requires reliable data accumulation and analysis based on a reasonable estimation method. In this study, we propose a revised unit load estimation method by analyzing the unit load calculation procedure of National Institute of Environment Research(NIER) method. Both methods were tested using observed runoff ratio and water quality data of rice paddy fields. The estimated values with the respective NIER and revised NIER methods were highly correlated each other. However, the Event Mean Concentration(EMC) and the runoff ratio considered in the NIER method appeared to be influenced by rainfall classes, and the difference in unit load increases as the runoff and EMC increase. The error can be further increased when the EMC and runoff ratio are changed according to changes in rainfall patterns by climate change and change of agricultural activities. Therefore, it is recommended to calculate unit load by applying the revised NIER method reflecting the non point pollution runoff characteristics for different rainfall classes.

Irrigation Water Requirements for Upland Crops Using Rainfall Data and Water Management Guidelines (강우 자료와 밭작물 물관리 지침서를 이용한 노지 밭작물의 관개 필요량 산정 연구)

  • Choi, Yonghun;Kim, Youngjin;Kim, Yongwon;Kim, Minyoung;Jeon, Jonggil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.121-130
    • /
    • 2019
  • The purpose of this study is to determine the amount of irrigation water for upland crop growth based on the 30 year of historical rainfall data and the water management guidelines as a reference. Five regions and ten crops were selected by their cultivation size. The changes of soil moisture contents were calculated using daily mean rainfall and irrigation demand. This study assumed that crops are irrigated when the soil moisture contents fell below of the field capacity for more than 5 days, which is the drought condition defined by RDA. The maximum irrigation water requirements was 167.2 mm for chinese cabbage during the growing season, which was followed by corn (112.0 mm), daikon (102.3 mm), spinach (66.1 mm), lettuce (56.7 mm), pepper (46.5 mm), potato (33.9 mm), sweet tomato (27.4 mm), peanut (11.5 mm) and bean (10.3 mm), The results of this study could contribute to providing valuable data to determine the capacity of irrigation facilities and to establish the emergency operation plans under extreme unfavorable weather condition (heat wave, etc.) for crop growth.

Establishment of flood forecasting and warning system in the un-gauged small and medium watershed through ODA (ODA사업을 통한 미계측 중소하천 유역 홍수예경보시스템 구축)

  • Koh, Deuk-Koo;Lee, Chihun;Jeon, Jeibok;Go, Sukhyon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.381-393
    • /
    • 2021
  • As part of the National Disaster Management Research Institute's Official Development Assistance (ODA) projects for transferring new technologies in the field of disaster-safety management, a flood forecasting and warning system was established in 2019 targeting the Borikhan in the Namxan River Basin in Bolikhamxai Province, Laos. In the target area, which is an ungauged small and medium river basin, observation stations for real-time monitoring of rainfall and runoff and alarm stations were installed, and a software that performs real-time data management and flood forecasting and warning functions was also developed. In order to establish a flood warning standard and develop a nomograph for flood prediction, hydraulic and hydrological analysis was performed based on the 30-year annual maximum daily rainfall data and river morphology survey results in the target area. This paper introduces the process and methodology used in this study, and presents the results of the system's applicability review based on the data observed and collected in 2020 after system installation.

Analysis of Meteorological Characteristics by Fine Dust Classification on the Korean Peninsula, 2015~2021 (2015년~2021년 한반도 고농도 미세먼지 사례의 유형분류에 따른 기상학적 특징 분석)

  • Jee, Joon-Bum;Cho, Chang-Rae;Kim, Yoo-Jun;Park, Seung-Shik
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.119-133
    • /
    • 2022
  • From 2015 to 2021, high-concentration fine dust episodes with a daily average PM2.5 concentration of 50 ㎍ m-3 or higher were selected and classified into 3 types [long range transport (LRT), mixed (MIX) and Local emission and stagnant (LES)] using synoptic chart and backward trajectory analysis. And relationships between the fine particle data (PM2.5 and PM10 concentration and PM2.5/PM10 ratio) and meteorological data (PBLH, Ta, WS, U-wind, and Rainfall) were analyzed using hourly observation for the classification episodes on the Korean Peninsula and the Seoul metropolitan area (SMA). In LRT, relatively large particles such as dust are usually included, and in LES, fine particle is abundant. In the Korean peninsula, the rainfall was relatively increased centered on the middle and western coasts in MIX and LES. In the SMA, wind speed was rather strong in LRT and weak in LES. In LRT, rainfall was centered in Seoul, and in MIX and LES, rainfall appeared around Seoul. However, when the dust cases were excluded, the difference between the LRT and other types of air quality was decreased, but the meteorological variables (Ta, RH, Pa, PBLH, etc.) were further strengthened. In the case of the Korean Peninsula, it is difficult to find a clear relationship because regional influences (topographical elevation, cities and coasts, etc.) are complexly included in a rather wide area. In the SMA, it is analyzed that the effects of urbanization such as the urban heat island centered on Seoul coincide with the sea and land winds, resulting in a combination of high concentrations and meteorological phenomena.

Daily Streamflow Model for the Korean Watersheds (韓國 河川의 日 流出量 模型)

  • Kim, Tae-Cheol;Park, Seong-Ki;Ahn, Byoung-Gi
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.223-233
    • /
    • 1996
  • Daily streamflow model, DAWAST, considering the meteorologic and geographic characteristics of the Korean watersheds has been developed to simulate the daily streamflow with the input data of daily rainfall and pan evaporation. The model is the conceptual one with three sub-models which are optimization, generalization, and regionalization models. The conceptual model consists of three linear reservoirs representing the surface, unsaturated, and saturated soil zones and water balance analysis was carried out in each soil zones on a daily basis. Optimization model calibrates the parameters by optimization technique and is applicable to the watersheds where the daily streamflow data are available Generalization model predicts the parameters by regression equations considering the geographic, soil type, land use, and hydrogeologic characteristics of watershed and is appicable to ungaged medium or small watersheds. Regionalization model cites the parameters from the analysed ones considering river system, latitude and longitude, and is applicable to ungaged large watersheds.

  • PDF

Analysis on Meteorological Factors related to the Distribution of PM10 Concentration in Busan (부산지역 미세먼지 농도 분포에 따른 기상요소 분석)

  • Kim, Min-Kyoung;Jung, Woo-Sik;Lee, Hwa Woon;Do, Woo-Gon;Cho, Jung-Gu;Lee, Kwi-Ok
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1213-1226
    • /
    • 2013
  • $PM_{10}$ concentration is related to the meteorological variables including to local and synoptic meteorology. In this study the $PM_{10}$ concentrations of Busan in 2007~2011 were analyzed and the days of yellow sand or rainfall which is more than 5 mm were excluded. The sections of $PM_{10}$ concentration were divided according to 10-quantiles, quartiles and 90-quantiles. The 90-quantiles of daily $PM_{10}$ concentration were selected as high concentration dates. In the high concentration dates the daily mean averaged cloudness, mean daily surface wind speed, daily mean surface pressure and PBL height were low and diurnal variation of surface pressure and daily maximum surface temperature were high. When the high $PM_{10}$ dates occurred, the west and south wind blew on the ground and the west wind blew strongly on the 850 hPa. So it seemed that long range transboundary air pollutants made effects on the high concentration dates. The cluster analysis using Hysplit model which is the backward trajectory was made on the high concentration dates. As a result, 3 clusters were extracted and on the short range transboundary cluster the daily mean relative humidity and cloudness were high and PBL height was low.

Runoff Pattern in Upland Soils with Various Soil Texture and Slope at Torrential Rainfall Events (집중강우시 우리나라 밭토양의 토성과 경사에 따른 물유출 양상)

  • Jung, Kang-Ho;Hur, Seung-Oh;Ha, Sang-Geon;Park, Chan-Won;Lee, Hyun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.208-213
    • /
    • 2007
  • When overland flow water is small and slow, it moves down a stream slowly and we use it as available resource. However, it could not only be good for nothing but arouse an inundation if a lot of runoff pour down to stream at a torrential rain. So it is important to know how much water to flow out and be stored in soil and on land in order to predict a flood and conserve soil and water quality. We intended to develop the prediction model of runoff in upland at a torrential rain and conducted lysimeter study in soybean cultivation and bare soil with 3 slopeness, 3 slope length and 5 soil texture from 1985 to 1991. The data of rainfall and runoff were used when daily rainfall was over 80 mm, the level of torrential rain warning. Minimum rainfall occurring runoff (MROR) was dependent on surface coverage and slope length. However soil texture and slopeness had a little influence on MROR. Runoff after MROR increased in proportion to precipitation which depended on surface coverage, soil texture and slope. Runoff ratio was larger in fine texture and bare soil than coarse soil and soybean coverage. Runoff ratio was in proportion to a square root of slope angle(radian) and reduced with slope length to converge a certain value. From these basis, we developed the prediction model following as $$Runoff(mm)=a(s^{0.5}+l^b)(Rainfall(mm)-80(1-e^{-bl}))$$ where a is a coefficient relevant soil hydraulic properties, b is a surface coverage coefficient, s is a slope angle and l is a slope length. The coefficient a was 0.5 in sandy loam and 0.6 in clay, and b was 0.06 in bare soil and 0.5 in soybean cultivation.

Analysis of Soil Erosion Hazard Zone by R Factor Frequency (빈도별 R인자에 의한 토양침식 위험지역 분석)

  • Kim, Joo-Hun;Oh, Deuk-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.47-56
    • /
    • 2004
  • The purpose of this study is to estimate soil loss amount according to the rainfall-runoff erosivity factor frequency and to analyze the hazard zone that has high possibilities of soil erosion in the watershed. RUSLE was used to analyze soil loss quantity. The study area is Gwanchon that is part of Seomjin river basin. To obtain the frequency rainfall-runoff erosivity factor, the daily maximum rainfall data for 39 years was used. The probability rainfall was calculated by using the Normal distribution, Log-normal distribution, Pearson type III distribution, Log-Pearson type III distribution and Extreme-I distribution. Log-Pearson type III was considered to be the most accurate of all, and used to estimate 24 hours probabilistic rainfall, and the rainfall-runoff erosivity factor by frequency was estimated by adapting the Huff distribution ratio. As a result of estimating soil erosion quantity, the average soil quantity shows 12.8 and $68.0ton/ha{\cdot}yr$, respectively from 2 years to 200 years frequency. The distribution of soil loss quantity within a watershed was classified into 4 classes, and the hazard zone that has high possibilities of soil erosion was analyzed on the basis of these 4 classes. The hazard zone represents class IV. The land use area of class IV shows $0.01-5.28km^2$, it ranges 0.02-9.06% of total farming area. Especially, in the case of a frequency of 200 years, the field area occupies 77.1% of total fanning area. Accordingly, it is considered that soil loss can be influenced by land cover and cultivation practices.

  • PDF

Throughfall, Stemflow and Interception Loss at Pinus taeda and Pinus densiflora stands (테다소나무림과 소나무림에서의 수관통과우량(樹冠通過雨量), 수간유하우량(樹幹流下雨量) 및 차단손실우량(遮斷損失雨量))

  • Min, Hong-Jin;Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.502-516
    • /
    • 1995
  • The objective of this study was to estimate throughfall, stemflow, interception loss and net rainfall in relation to rainfall interception, and to understand the factors affecting interception process at Pinus taeda stand and Pinus densiflora stand in the Research Forests of Seoul National University, located in Choosan, Kwangyang, Chollanamdo. 1. The gross rainfall during the period of field observation was 3,107.6mm(average 1,035.9mm/year). Most of the daily rainfall intensity was under 30mm, which was 90% in 1992, 81% in 1993 and 88% in 1994. 2. In this study the throughfall, stemflow, interception loss and net rainfall were expressed separately as a function of gross rainfall. The overall throughfall collected during the period of field observation was 2,432.5mm(78.3%) at Pinus taeda stand and 2,699.6mm at Pinus densiflora stand, out of total rainfall of 3107.6mm. The canopy storage capacity, which was determined by the prediction equation between gross rainfall and throughfall was 1.1mm at Pinus taeda stand and 1.3mm at Pinus densiflora stand. 3. The sums of stemflow from measurement of total rainfall at Pinus taeda stand and Pinus densiflora stand was 227.3mm(7.3%) and 62.7mm(2.0%), respectively. The minimum rainfall causing stemflow was estimated as 7.2mm at Pinus taeda stand and 1.9mm at Pinus densiflora stand. 4. Interception loss accounted for 447.8mm(14.4%) at Pinus taeda stand and 345.3mm(11.1%) at Pinus densiflorra stand. 5. Net rainfall was 2,659.8mm(85.6%) at Pinus taeda stand and 2,762.3mm(88.9%) at Pinus densiflora stand. 6. The rates of throughfall and stemflow increased with increasing the gross rainfall. However, the amounts of throughfall and the stemflow were constant above 30mm at Pinus taeda stand and 50mm at Pinus densiflora stand. The rates of interception loss decreased with increasing the gross rainfall. However, the amount of interception loss was constant above 50mm at Pinus taeda stand and Pinus densiflora stand.

  • PDF

Water Consumption of Twisted Sweet Pepper in Greenhouse (온실에서의 꽈리고추 소비수량)

  • 윤용철;이근후;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.217-223
    • /
    • 1998
  • This study was performed to figure out water consumption of the twisted sweet pepper in a greenhouse. Obtained results are as follows; 1. The ambient temperature was nearly same as the normal year, while the average air temperature and the relative humidity in the green house were little bit higher than those of the outside condition. The transparency of the greenhouse roof was approximately 50%. The total amount of rainfall during the irrigation period was 1,040㎜ which is 350㎜ higher than 1997 during the same period. 2. In case of pot cultivation, as the saturation ratio was increased, the aeaf area and plant height and yield were also increased. The yield from the field cultivation was higher than the average yield from the pot cultivations which are treated by three levels of saturation ratio. 3. The variation of daily consumptive use of the twisted sweet pepper was very large in it's range. In case of the pot cultivation, as the saturation was increased, the daily and the total consumptive use were increased. 4. The daily consumptive use was strongly correlated with the ambient temperature, while it was weakly correlated with the relative humidity and solar radiation. 5. There were close correlation between plant environment; leaf area, plant height and yield, and consumptive use. As the saturation ratio was increased, the correlation between those plant factors and consumptive use was getting stronger.

  • PDF