사과 점무늬낙엽병(斑點落葉病)의 초발(初發)과 초발후의 병진전을 예찰하기 위하여 기상요인중에서 적산온도(積算)와 강우빈도를 사용하여 예찰할 수 있는 경험적 모델이 3년간의 포장시험으로 작성되었다. 사과의 생육기간중 4월 20일부터 7월말까지 기상요인을 측정, 분석하었고 이들 기상요인들이 모델작성의 변량(變量)으로써 사용되었다. 하루의 평균온도에서 $10^{\circ}C$를 뺀 온도가 적산되어(CDP) 대기온도와 점무늬낙엽병초발과의 관계를 알기위한 한 모수(母數)로서 사용되었다. 병의 초발에 필요한 CDP는 약 160으로서 이 수치는 초발에 필요한 CDP의 하한(下限)온도로 사용되었다. 160 CDP가 도달된 후에는 강우 빈도가 초발을 결정하는 요인이었으며 적어도 4번의 강우가 초발에 필요하였다. 초발후의 병진전은 대체로 강우 빈도가 누적되는 모양과 유사하였다. 병진전의 일반 미분(微分)방정식모델 dx/dt=xr(1-x)에서 산출된 3개년의 병진전 직선의 명백한 감염속도(r)는 강우빈도의 누적율(Rc)과 1차(직선)기능으로서 직선방정식 r=1.06Rc-0.11($R^2=0.993$)에서 직접 추정이 가능하였다. 일정시간(t)후의 발병정도(x)는 미분방정식 모델에서 유도된 지수(指數)방정식 $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$에서 예측될 수 있는데 이때의 $x_0$는 초발시발병정도 $b_0$와 $b_1$은 강우빈도 누적률 Rc의 모수(母數)이다. Alternaria mali 분생포자의 공기증밀도의 매일의 누적치와 병진전과는 통계상 유의적인 1차관계(linear relationship)가 있었는데 공기중 분생포자 밀도의 누적치를 독립변량으로 사용하여 병진전을 예측하였을때 예측의 정확도는 $R^2=0.3328$로서 비교적 낮았다.
우리나라도 2000 년에 65세 이상 고령자 인구가 전인구의 7%에 도달하며서 소위 고령화 사회에 진입하게 되었고 앞으로 25년간 우리나라 고령자인구의 증가율은 세계적으로 유례없이 급속할 것으로 예상된다. 이러한 측면에서 최근 고령화 문제가 사회적인 이슈로 대두됨에 따라 교통시설물 계획 등에서 고령인구의 통행특성을 고려한 계획 및 설계가 필수적으로 요구되어지고 있다 하지만, 기존의 교통존 혐의 집계분석 방법론에서는 일반인과 고령자의 평균값을 사용함으로써 고령자의 통행 특성 및 사회경제적 특성을 고려하는데 한계를 가지고 있다. 따라서 본 연구는 일반인과 다른 고령자의 통행특성을 분석하기 위해 네스티드 로지모형을 이용하여 개인의 통행특성을 반영할 수 있는 비집계분석의 방법론으로 활동 스케줄링 모형을 구축하고 정립하였다. 본 연구에서의 분석결과 일반인과 비교해 고령자의 통행특성은 직장인과 비직장인 모두에서 출발시간과 수단 선택에서 큰 차이를 가지는 것으로 분석되었다 이러한 개인 통행특성의 차이를 간과한 기존의 교통존 중심의 집계분석 방법론으로 장래 수요 예측시에 큰 편이를 초래할 것으로 예상된다 따라서 본 연구는 개인통행특성을 고려하기 위해 활동기반모형의 필요성을 강조할 수 있는 좋은 선행과제가 될 것으로 기대한다 또한, 활동기반분석의 지속적인 연구 및 이에 대한 개발은 현재 대두되고 있는 도로사업 평가의 신뢰성, 향후교통시설물 계획 및 설계 평가에 중요 요소로 인식되는 교통량 예측 등에 대한 신뢰성 향상에 많은 기회를 할 것으로 판단된다
본연구에서는 제주도의 중제주 수역 내에 위치하는 총 12개 지하수 관정에서 미래 30일 기간의 지하수위를 예측할 수 있는 모델을 개발하였다. 예측 모델개발을 위해 시계열 예측에 적합한 딥러닝 기법의 하나인 누적 장단기 메모리(stacked-LSTM) 기법을 이용하였으며, 2001년에서 2022년 동안 관측된 일 단위 강수량, 지하수 이용량 및 지하수위 자료가 예측 모델개발에 활용되었다. 특히, 본 연구에서는 입력자료의 종류 및 과거 자료의 순차 길이에 따라 다양한 모델을 구축하고 성능을 비교함으로써 딥러닝 기반 예측 모델개발에서 고려하여야 할 사항에 대한 검토와 절차를 제시하였다. 예측 모델개발 결과, 강수량, 지하수 이용량 및 과거 지하수위를 모두 입력자료로 활용하는 모델의 예측성능이 가장 뛰어난 것으로 확인되었으며, 입력으로 활용되는 과거 자료의 순차가 길수록 예측의 성능이 향상됨을 확인하였다. 이는 제주도의 깊은 지하수위 심도로 인하여 강수와 지하수 함양 간 지연시간이 길기 때문으로 판단된다. 이뿐만 아니라, 지하수 이용량 자료의 경우, 모든 이용량 자료를 활용하는 것보다 예측하고자 하는 지점의 지하수위에 민감한 영향을 주는 관정을 선별하여 입력자료로 이용하는 것이 예측 모델의 성능 개선에 긍정적 영향을 주는 것을 확인하였다. 본 연구에서 개발된 지하수위 예측 모델은 현재의 강수량 및 지하수 이용량을 기반으로 미래의 지하수위를 예측할 수 있어 미래의 지하수량에 대한 건전성 정보를 제공함에 따라 적정 지하수량 유지를 위한 다양한 관리방안 마련에 도움이 될 것으로 판단된다.
본 연구에서는 농촌진흥청에서 홍콩과학기술대학교와 국제공동연구를 통해 개발중인 1개월 농업기상 예측 시스템을 이용하여 2012-2022년 기간 동안 1개월 과거기후 예측 정보를 생산하고, 유효적산온도 기법을 적용하여 벼 수확일 전망 가능성을 살펴보았다. 상세한 기후정보를 얻기 위해, 지역기후모델(WRF)을 이용하여 전지구 기후예측 정보(CFSv2)를 남한지역에 대해 5 km 해상도로 규모축소하였다. 벼 수확일은 역학적 규모축소된 최고기온과 최저기온 과거예측 자료를 유효적산온도에 적용하여 추정하였다. 모형의 최고기온(최저기온)는 벼 생육기간(5월~10월)에 대해 관측과 비교하여 약 1.2 ℃ (0.1 ℃) 정도 과소모의하였다. 벼 수확일 추정 자료는 정성적으로 관측의 전반적인 공간 패턴을 모의하면서 지형효과에 의한 상세한 지역적 편차를 모의하였다. 그러나 음의 기온 오차가 유효적산온도에 투영되어, 예측자료에서 추정한 벼 수확일이 관측에서 추정한 벼 수확일과 비교하여 정량적으로 약 9일 늦게 모의하였다. 본 연구를 통해 1개월 기상예측 정보와 유효적산온도를 이용하여 남한 전역에 대해 공간적으로 연속적인 상세한(5 km) 벼 수확일 정보를 사전에 얻을 수 있는 가능성을 보았다. 예측정보의 신뢰성을 확보하고, 유효적산온도 뿐만 아니라 농업모형과 연계한다면 다양한 작목에 대한 농업정보들을 사전에 생산할 수 있을 것으로 생각된다.
상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.