• 제목/요약/키워드: Daily forecasting

검색결과 315건 처리시간 0.021초

사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델 (An Empirical Model for Forecasting Alternaria Leaf Spot in Apple)

  • 김충회;조원대;김승철
    • 한국응용곤충학회지
    • /
    • 제25권4호
    • /
    • pp.221-228
    • /
    • 1986
  • 사과 점무늬낙엽병(斑點落葉病)의 초발(初發)과 초발후의 병진전을 예찰하기 위하여 기상요인중에서 적산온도(積算)와 강우빈도를 사용하여 예찰할 수 있는 경험적 모델이 3년간의 포장시험으로 작성되었다. 사과의 생육기간중 4월 20일부터 7월말까지 기상요인을 측정, 분석하었고 이들 기상요인들이 모델작성의 변량(變量)으로써 사용되었다. 하루의 평균온도에서 $10^{\circ}C$를 뺀 온도가 적산되어(CDP) 대기온도와 점무늬낙엽병초발과의 관계를 알기위한 한 모수(母數)로서 사용되었다. 병의 초발에 필요한 CDP는 약 160으로서 이 수치는 초발에 필요한 CDP의 하한(下限)온도로 사용되었다. 160 CDP가 도달된 후에는 강우 빈도가 초발을 결정하는 요인이었으며 적어도 4번의 강우가 초발에 필요하였다. 초발후의 병진전은 대체로 강우 빈도가 누적되는 모양과 유사하였다. 병진전의 일반 미분(微分)방정식모델 dx/dt=xr(1-x)에서 산출된 3개년의 병진전 직선의 명백한 감염속도(r)는 강우빈도의 누적율(Rc)과 1차(직선)기능으로서 직선방정식 r=1.06Rc-0.11($R^2=0.993$)에서 직접 추정이 가능하였다. 일정시간(t)후의 발병정도(x)는 미분방정식 모델에서 유도된 지수(指數)방정식 $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$에서 예측될 수 있는데 이때의 $x_0$는 초발시발병정도 $b_0$$b_1$은 강우빈도 누적률 Rc의 모수(母數)이다. Alternaria mali 분생포자의 공기증밀도의 매일의 누적치와 병진전과는 통계상 유의적인 1차관계(linear relationship)가 있었는데 공기중 분생포자 밀도의 누적치를 독립변량으로 사용하여 병진전을 예측하였을때 예측의 정확도는 $R^2=0.3328$로서 비교적 낮았다.

  • PDF

활동 스케줄 분석을 통한 고령자의 통행특성과 통행행태에 관한 연구 (Analysis of the Elderly Travel Characteristics and Travel Behavior with Daily Activity Schedules (the Case of Seoul, Korea))

  • 서상언;정진혁;김순관
    • 대한교통학회지
    • /
    • 제24권5호
    • /
    • pp.89-108
    • /
    • 2006
  • 우리나라도 2000 년에 65세 이상 고령자 인구가 전인구의 7%에 도달하며서 소위 고령화 사회에 진입하게 되었고 앞으로 25년간 우리나라 고령자인구의 증가율은 세계적으로 유례없이 급속할 것으로 예상된다. 이러한 측면에서 최근 고령화 문제가 사회적인 이슈로 대두됨에 따라 교통시설물 계획 등에서 고령인구의 통행특성을 고려한 계획 및 설계가 필수적으로 요구되어지고 있다 하지만, 기존의 교통존 혐의 집계분석 방법론에서는 일반인과 고령자의 평균값을 사용함으로써 고령자의 통행 특성 및 사회경제적 특성을 고려하는데 한계를 가지고 있다. 따라서 본 연구는 일반인과 다른 고령자의 통행특성을 분석하기 위해 네스티드 로지모형을 이용하여 개인의 통행특성을 반영할 수 있는 비집계분석의 방법론으로 활동 스케줄링 모형을 구축하고 정립하였다. 본 연구에서의 분석결과 일반인과 비교해 고령자의 통행특성은 직장인과 비직장인 모두에서 출발시간과 수단 선택에서 큰 차이를 가지는 것으로 분석되었다 이러한 개인 통행특성의 차이를 간과한 기존의 교통존 중심의 집계분석 방법론으로 장래 수요 예측시에 큰 편이를 초래할 것으로 예상된다 따라서 본 연구는 개인통행특성을 고려하기 위해 활동기반모형의 필요성을 강조할 수 있는 좋은 선행과제가 될 것으로 기대한다 또한, 활동기반분석의 지속적인 연구 및 이에 대한 개발은 현재 대두되고 있는 도로사업 평가의 신뢰성, 향후교통시설물 계획 및 설계 평가에 중요 요소로 인식되는 교통량 예측 등에 대한 신뢰성 향상에 많은 기회를 할 것으로 판단된다

딥러닝 기법을 이용한 제주도 중제주수역 지하수위 예측 모델개발 (Development of Deep-Learning-Based Models for Predicting Groundwater Levels in the Middle-Jeju Watershed, Jeju Island)

  • 박재성;정지호;정진아;김기홍;신재현;이동엽;정새봄
    • 지질공학
    • /
    • 제32권4호
    • /
    • pp.697-723
    • /
    • 2022
  • 본연구에서는 제주도의 중제주 수역 내에 위치하는 총 12개 지하수 관정에서 미래 30일 기간의 지하수위를 예측할 수 있는 모델을 개발하였다. 예측 모델개발을 위해 시계열 예측에 적합한 딥러닝 기법의 하나인 누적 장단기 메모리(stacked-LSTM) 기법을 이용하였으며, 2001년에서 2022년 동안 관측된 일 단위 강수량, 지하수 이용량 및 지하수위 자료가 예측 모델개발에 활용되었다. 특히, 본 연구에서는 입력자료의 종류 및 과거 자료의 순차 길이에 따라 다양한 모델을 구축하고 성능을 비교함으로써 딥러닝 기반 예측 모델개발에서 고려하여야 할 사항에 대한 검토와 절차를 제시하였다. 예측 모델개발 결과, 강수량, 지하수 이용량 및 과거 지하수위를 모두 입력자료로 활용하는 모델의 예측성능이 가장 뛰어난 것으로 확인되었으며, 입력으로 활용되는 과거 자료의 순차가 길수록 예측의 성능이 향상됨을 확인하였다. 이는 제주도의 깊은 지하수위 심도로 인하여 강수와 지하수 함양 간 지연시간이 길기 때문으로 판단된다. 이뿐만 아니라, 지하수 이용량 자료의 경우, 모든 이용량 자료를 활용하는 것보다 예측하고자 하는 지점의 지하수위에 민감한 영향을 주는 관정을 선별하여 입력자료로 이용하는 것이 예측 모델의 성능 개선에 긍정적 영향을 주는 것을 확인하였다. 본 연구에서 개발된 지하수위 예측 모델은 현재의 강수량 및 지하수 이용량을 기반으로 미래의 지하수위를 예측할 수 있어 미래의 지하수량에 대한 건전성 정보를 제공함에 따라 적정 지하수량 유지를 위한 다양한 관리방안 마련에 도움이 될 것으로 판단된다.

역학적 규모축소 기온을 이용한 남한지역 벼 수확일 1개월 예측 (1-month Prediction on Rice Harvest Date in South Korea Based on Dynamically Downscaled Temperature)

  • 허지나;임은순;하수빈;김용석;김응섭;이준리;조세라;심교문;강민구
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.267-275
    • /
    • 2023
  • 본 연구에서는 농촌진흥청에서 홍콩과학기술대학교와 국제공동연구를 통해 개발중인 1개월 농업기상 예측 시스템을 이용하여 2012-2022년 기간 동안 1개월 과거기후 예측 정보를 생산하고, 유효적산온도 기법을 적용하여 벼 수확일 전망 가능성을 살펴보았다. 상세한 기후정보를 얻기 위해, 지역기후모델(WRF)을 이용하여 전지구 기후예측 정보(CFSv2)를 남한지역에 대해 5 km 해상도로 규모축소하였다. 벼 수확일은 역학적 규모축소된 최고기온과 최저기온 과거예측 자료를 유효적산온도에 적용하여 추정하였다. 모형의 최고기온(최저기온)는 벼 생육기간(5월~10월)에 대해 관측과 비교하여 약 1.2 ℃ (0.1 ℃) 정도 과소모의하였다. 벼 수확일 추정 자료는 정성적으로 관측의 전반적인 공간 패턴을 모의하면서 지형효과에 의한 상세한 지역적 편차를 모의하였다. 그러나 음의 기온 오차가 유효적산온도에 투영되어, 예측자료에서 추정한 벼 수확일이 관측에서 추정한 벼 수확일과 비교하여 정량적으로 약 9일 늦게 모의하였다. 본 연구를 통해 1개월 기상예측 정보와 유효적산온도를 이용하여 남한 전역에 대해 공간적으로 연속적인 상세한(5 km) 벼 수확일 정보를 사전에 얻을 수 있는 가능성을 보았다. 예측정보의 신뢰성을 확보하고, 유효적산온도 뿐만 아니라 농업모형과 연계한다면 다양한 작목에 대한 농업정보들을 사전에 생산할 수 있을 것으로 생각된다.

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.