• Title/Summary/Keyword: Daily Maximum Air Temperature

Search Result 135, Processing Time 0.029 seconds

Synoptic Air Mass Classification Using Cluster Analysis and Relation to Daily Mortality in Seoul, South Korea (클러스터 분석을 통한 종관기단분류 및 서울에서의 일 사망률과의 관련성 연구)

  • Kim, Jiyoung;Lee, Dae-Geun;Choi, Byoung-Cheol;Park, Il-Soo
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • In order to investigate the impacts of heat wave on human health, cluster analysis of meteorological elements (e.g., temperature, dewpoint, sea level pressure, visibility, cloud amount, and wind components) for identifying offensive synoptic air masses is employed. Meteorological data at Seoul during the past 30 years are used. The daily death data at Seoul are also employed. Occurrence frequency of heat waves which is defined by daily maximum temperature greater than the threshold temperature (i.e., $31.2^{\circ}C$) was analyzed. The result shows that the frequency and duration of heat waves at Seoul are increasing during the past 30 years. In addition, the increasing trend of the frequency and duration clearly appears in late spring and early autumn as well as summer. Factor analysis shows that 65.1% of the total variance can be explained by 4 components which are linearly independent. Eight clusters (or synoptic air masses) were classified and found to be optimal for representing the summertime air masses at Seoul, Korea. The results exhibit that cluster-mean values of meteorological variables of an offensive air mass (or cluster) are closely correlated with the observed and standardized deaths.

A New Look at the Statistical Method for Remote Sensing of Daily Maximum Air Temperature (위성자료를 이용한 일최고온도 산출의 통계적 접근에 관한 고찰)

  • 변민정;한경수;김영섭
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • This study aims to estimate daily maximum air temperature estimated using satellite-derived surface temperature and Elevation Derivative Database (EDD). The analysis is focused on the establishment of a semi-empirical estimation technique of daily maximum air temperature through the multiple regression analysis. This tests the contribution of EDD in the air temperature estimation when it is added into regression model as an independent variable. The better correlation is shown with the EDD data as compared with the correlation without this data set. In order to provide a progressive estimation technique, we propose and compare three approaches: 1) seasonal estimation non-considering landcover, 2) seasonal estimation considering landcover, and 3) estimation according to landcover type and non-considering season. The last method shows the best fit with the root-mean-square error between 0.56$^{\circ}C$ and 3.14$^{\circ}C$. A cross-validation procedure is performed for third method to valid the estimated values for two major landcover types (cropland and forest). For both landcover types, the validation results show reasonable agreement with estimation results. Therefore it is considered that the estimation technique proposed may be applicable to most parts of South Korea.

The Estimation of Urbanization Effect in Global Warming over Korea using Daily Maximum and Minimum Temperatures (최고, 최저기온을 이용한 우리나라 기온변화에서의 도시화효과 분석)

  • Koo, Gyo-Sook;Boo, Kyung-On;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.185-193
    • /
    • 2007
  • This study investigates urbanization effect in warming trend of surface air temperature over Korea. The data used in this study consist of the daily minimum and maximum temperatures during the period of 32 years(1968-1999) from 16 stations of KMA. To calculate magnitude and trend of urbanization effect, stations were classified into urban and rural stations using population statistics. Urban stations were defined as those with population densities greater than 1000 persons per kilometer squared in 1995. The others were defined as rural stations. The urban stations were also subdivided into two groups according to their population totals. For estimates of urban effect magnitude, temperature change was calculated by comparing 16-year mean values between 1968-83 and 1984-99. Then, the difference between each urban station and every rural station was calculated. During the analysis period of 32 years, maximum temperature increase is $1.22^{\circ}C$. In the total temperature increase, urban effect is estimated by 28.7%. For minimum temperature, it becomes larger by about 10% than that in maximum temperature. Therefore, urban effect in an increasing trend of minimum temperature is 38.9% in the change of $1.13^{\circ}C$.

Variations of Soil Temperatures in Winter and Spring at a High Elevation Area (Boulder, Colorado)

  • Lee, Jin-Yong;Lim, Hyoun Soo;Yoon, Ho Il;Kim, Poongsung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.16-25
    • /
    • 2015
  • The City of Boulder is located at an average elevation of 1,655 m (5,430 feet), the foothills of the Rocky Mountains in Colorado. Its daily air temperature is much varying and snow is very frequent and heavy even in spring. This paper examines characteristics of shallow (surface and depth = 10 cm) soil temperatures measured from January to May 2015 in the high elevation city Boulder, Colorado. The surface soil temperature quickly responded to the air temperature with the strongest periodicity of 1 day while the subsurface soil temperatures showed a less correlation and delayed response with that. The short-time Fourier of the soil temperatures uncovered their very low frequencies characteristics in heavy snow days while it revealed high frequencies of their variations in warm spring season. The daily minimum air temperature exhibited high cross-correlations with the soil temperatures without lags unlike the maximum air temperature, which is derived from its higher and longer auto-correlation and stronger spectrums of low frequencies than the maximum air temperature. The snow depth showed an inverse relationship with the soil temperature variations due to snow's low thermal conductivity and high albedo. Multiple regression for the soil temperatures using the air temperature and snow depth presented its predicting possibility of them even though the multiple r2 of the regression is not that much satisfactory (r2 = 0.35-0.64).

The Impacts of Urbanization on Changes of Extreme Events of Air Temperature in South Korea (한국의 도시화에 의한 극한기온의 변화)

  • Lee, Seung-Ho;Heo, In-Hye
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.257-276
    • /
    • 2011
  • This study aimed to analyze the changes of extreme temperature indices in order to investigate impacts of urbanization on changes of extreme temperature. It was analyzed 16 indices related to extreme temperature indices to 60 weather stations in South Korea. Extreme temperature indices-related summer mostly increased, and its related to winter decreased. Percentile-based indices were clearly increased more than fixed-based indices as a tropical night. Decreasing trend of extreme temperature indices related to winter had more clear than increasing trend of extreme temperature indices related to summer. It was similar to trend that urban temperature was more clearly increased in winter than summer. Decreasing trend of indices-related daily minimum temperature had more clear than increasing trend of indices-related daily maximum temperature. Also, it was similar to increasing trend of minimum temperature had more clear than maximum temperature.

Air Temperature Variation Affected by Site Elevation in Hilly Orchards (구릉지 과원의 고도에 따른 기온변이)

  • 정유란;서희철;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 2003
  • Air temperature was continuously measured in hilly pear orchards at 4 sites with elevations of 10, 49, 104 and 253 m above sea level. The mean air temperature, averaged over the 10-month period from August 2001 to June 2002, decreased as the site elevation increased by 0.2$^{\circ}C$ per 100 m. This weak lapse condition was amplified during daytime by sun-slope geometry. But on most days an inversion condition began by sunset and persisted until the next sunrise. During the observation period, daily minimum temperature at the valley bottom was lower than that of the hilltop on 67% of the days, and the average temperature difference was 1.4$^{\circ}C$. Inversion of daily minimum temperature under clear sky conditions was stronger in spring and autumn than in winter with a maximum of 6$^{\circ}C$. Lapse condition was predominant in daily minimum temperature on rainy days, and the lapse rate was strongest in winter.

Factors Affecting Acer mono sap Exudation : Kwangyang Region in Korea (고로쇠나무 수액의 출수에 미치는 영향 인자 분석 : (I) 광양지역)

  • Choi, Won-Sil;Park, Mi-Jin;Lee, Hak-Ju;Choi, In-Gyu;Kang, Ha-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.66-74
    • /
    • 2010
  • This study was carried out to investigate the optimum condition for sap exudation of Acer mono Max. tree in a site of Mt. Baekun, Kwangyang city, Korea. Amount of sap exudation, air temperature, relative air humidity and tree diameter at breast height (DBH) were monitored for the period of January 5 through March 28, 2008, and correlation analysis of several factors affecting on sap exudation was carried out. As the diameter of Acer mono at breast height increased, the amount of sap was linearly proportional. Sap exudation initiated at February 18, and occurred intensively in the period of February 28 through March 10, resulting in 84% of total sap amount by volume. During sap exudation, the minimum temperature was averaged at $-2.4{\pm}1.5^{\circ}C$ and the maximum at $6.0{\pm}1.8^{\circ}C$, while there was no sap exudation whenever temperature was below or above $0^{\circ}C$ all the day long. The maximum temperature, range of temperature and the maximum, minimum and mean humidities in air were significant factors affecting on amount of sap. The maximum air temperature had the highest correlation coefficient with 0.768 (P < 0.01) and was also considered as the principal factor by partial-correlation analysis. These results showed that sap exudation required daily air-temperature fluctuation from below to above $0^{\circ}C$, and the amount of sap was strongly dependent on the highest daily-temperature and DBH of tree.

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

A Study on Foehn over HongCheon Area of Gangwon Province in South Korea (강원도 홍천 지역의 푄 연구)

  • Kim, Yumi;Kim, Man Kyu
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • Previous studies have shown that Foehn was mainly observed in Young-seo area in Korea. However, they have failed to indicate the area where Foehn can be observed most frequently in Young-seo area and how Foehn is distributed in that area. This study targets HongCheon area in Young-seo province and examines the frequency and extent of Foehn in local scale through documenting a daily maximum air temperature map of Foehn. The period examined in this study is the months between March and June from 2003 to 2012. CoKriging method, which uses temperature and the altitude above sea, generates a higher level of accuracy in making daily maximum air temperature map of Foehn occurring days. We have found that Foehn is observed in certain areas, not all areas of HongCheon region, by compiling the daily maximum air temperature map. In particular, Foehn was found to be frequent and strong in the downstream of HongCheon river. In addition, we surveyed the residents of HongCheon about their perception of Foehn. They did not know whether high temperature and dryness in spring are caused by Foehn. The methods and techniques used to examine Foehn in local climate scale by this study will enhance the understanding of regional climate and contribute towards the research in this area. In particular, they can be applied to high temperature that recently occurred between spring and summer, excessive hotness in summers, agricultural plant growth in springs and etc.

  • PDF

Past and Future Temperature and Precipitation Changes over Korea using MM5 Model

  • Oh, Jai-Ho;Min, Young-Mi;Kim, Tae-Kook;Woo, Su-Min;Kwon, Won-Tae;Baek, Hee-Jeong
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.06a
    • /
    • pp.29-29
    • /
    • 2004
  • Long term observational analysis by climatologists has confirmedthat the global warming is no longer a topic of debate among scientists andpolicy makers. According to the report of IPCC-2001 (Intergovernmental Panelon Climate Change), the global mean surface air temperature is increasinggradually. The reported increase of mean temperature is by 0.6 degree in the end of twentieth century. This could represent severe threat for propertylosses especially due to increase in the number of extreme weather arising out of global warming. period of model integration from 2001 to 2100 using output of ECHAM4/HOPE-G of Max Planet Institute of Meteorology (MPI) for IPCC SRES (Special Report on Emission Scenarios). The main results of this study indicate increase of surface air temperature by 6.20C and precipitation by 2.6% over Korea in the end of 21st century. Simulation results also show that there is increase in daily maximum and minimum temperatures while decrease in diurnal temperature range (DTR). DTR changes are diminished mainly due to relatively rapid increase of daily minimum temperature than that of daily maximumtemperature. It has been observed that increase in precipitation amount anddecrease in the number of rainy days lead to increase of pre precipitationintensity.

  • PDF