• Title/Summary/Keyword: Daegu-Kyeongbuk region

Search Result 2, Processing Time 0.015 seconds

Weathering Properties of Shale Aggregate in Daegu-Kyeongbuk region and Freezing-Thawing Characteristics of Concrete in response to Usage of Shale Aggregate (대경권 셰일 골재의 풍화특성 및 셰일 골재 사용량에 따른 콘크리트의 동결융해 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4033-4038
    • /
    • 2013
  • Sedimentary rocks from construction waste are discarded through open storage and landfilling, which causes an increase in construction cost and inefficient of execution of works. Some sandstone are selected and utilized as aggregates, but shale is buried as industrial waste. Therefore, in this research, we evaluated weathering properties of shale aggregate that is widely distributed throughout Daegu-Kyeongbuk region and freeze-thaw characteristics of concrete according to the replacement ratio of shale aggregate, in an effort to stabilize aggregate supply-demand in Daegu-Kyeongbuk region and develop alternative aggregates. We used red shale and black shale in the experiment, which were exported from a construction site in Deagu. We verified the usage of shale as a concrete aggregate by comparing andesite, which is broadly used as a thick aggregate for concrete, to hornfels, which is a metamorphic sedimentary rock. As a result of the experiment, we observed no degradation phenomenon for andesite and hornfels. However, a part of country rock containing black shale was found to be exfoliated. Red shale started having cracks in the direction of stratification after 1.5 months of direct exposure, and it broke into smaller pieces after approximately 4 months. After 300 cycles of freeze-thaw process on the concrete manufactured according to the replacement ratio of shale aggregate, the modulus of elasticity was 97% for plain and 95% for hornfels. In the case of RS_100, it was 57% after 210 cycles, and for BS_100, it was 54% after 240 cycles. Therefore, we established that, as the number of repetition increases, the freeze-thaw resistance decreases dramatically.

Physical Properties of Shale Aggregate and Characteristics of Concrete in Replacement Ratio in Daegu-Kyeongbuk Region (대경권 셰일 골재의 물성 평가 및 치환율 변화에 따른 콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh;Bae, Su-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5551-5557
    • /
    • 2012
  • Sedimentary rocks dug up in construction fields are mostly stockpiled for landfill disposal, leading to an increase in construction costs and construction inefficiency. After screening, some of the sandstone can be used as aggregate; however, most of the shale ends up as industrial waste in practice. In this study, to stabilize the demand and develop resources for alternative aggregates of concrete, the potential use of shale, which is widely distributed in the Daegu-Kyeongbuk region, as a concrete aggregate was evaluated. Red and black shale exported from a Daegu excavation site was selected for use in the experiments and evaluated by comparing with hornfels, which is widely used as a coarse aggregate and is a type of andesite and metamorphosed sedimentary rock. The physical properties of the aggregate were evaluated in accordance with the test methods of KS F 2527 "crushed concrete aggregate," and the compressive strength against the shale aggregate replacement ratio was measured. The compressive strength of the concrete after 28 days was 30.8 MPa when the black shale replaced 100% of the aggregate in the concrete and 31.1 MPa when the red shale replaced 100% of the aggregate in the concrete. Compared with the compressive strength of 37.5 MPa for concrete prepared by using plain aggregate, using shale as a substitute for the aggregate produced an average compressive strength that was 82% of normal concrete.