• Title/Summary/Keyword: DWTT

Search Result 3, Processing Time 0.017 seconds

Effects of Specimen Thickness and Notch Shape on Fracture Mode Appearing in Drop Weight Tear Test (DWTT) Specimens of API X70 and X80 Linepipe Steels (API X70 및 X80 라인파이프강의 DWTT 시편 파괴 형태에 미치는 시편 두께와 노치 형태의 영향)

  • Hong, Seokmin;Shin, Sang Yong;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.705-716
    • /
    • 2010
  • Effects of specimen thickness and notch shape on fracture mode appearing in drop weight tear test (DWTT) specimens of API X70 and X80 linepipe steels were investigated. Detailed microstructural analysis of fractured DWTT specimens showed that the fractures were initiated in normal cleavage mode near the specimen notch, and that some separations were observed at the center of the fracture surfaces. The Chevron-notch (CN) DWTT specimens had broader normal cleavage surfaces than the pressed-notch (PN) DWTT specimens. Larger inverse fracture surfaces appeared in the PN DWTT specimens because of the higher fracture initiation energy at the notch and the higher strain hardening in the hammer-impacted region. The number and length of separations were larger in the CN DWTT specimens than in the PN DWTT specimens, and increased with increasing specimen thickness due to the plane strain condition effect. As the test temperature decreased, the tendency to separations increased, but separations were not found when the cleavage fracture prevailed at very low temperatures. The DWTT test results, such as upper shelf energy and energy transition temperature, were discussed in relation with microstructures and fracture modes including cleavage fracture, shear fracture, inverse fracture, and separations.

Estimation of fracture toughness of X65 and X70 steels by DWTT (X65 및 X70강 가스배관의 DWTT 및 파괴인성평가)

  • Cho, Ye-Won;Song, Young-Ho;Kim, Jeong-Min;Kim, Woo-Sik;Park, Joon-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.54-64
    • /
    • 2012
  • DWTT (Drop Weigh Tearing Test) is one critical method that can exhibit the fracture properties of line pipe steel, since it estimates the properties with real pipe steel. In this study, the ductile portion, inverse fracture ratio and absorbed energy of API X65 and X70 line pipe steels were estimated with temperature variation. Both steels showed that the ratio of ductile area and absorbed energy were decreased with respect to decreasing the test temperature. However, while the ductile fracture behavior exhibited until $-40^{\circ}C$ for the X70 steel, but it showed until $-30^{\circ}C$ for the X65 steel. The fracture properties were discussed with respect to test temperatures.

Temperature Effects on Fracture Toughness Parameters for Pipeline Steels

  • Chanda, Sourayon;Ru, C.Q.
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1754-1760
    • /
    • 2018
  • The present article showcases a temperature dependent cohesive zone model (CZM)-based fi nite element simulation of drop weight tear test (DWTT), to analyse fracture behavior of pipeline steel (PS) at different temperatures. By co-relating the key CZM parameters with known mechanical properties of PS at varying temperature, a temperature dependent CZM for PS is proposed. A modified form of Johnson and Cook model has been used for the true stress-strain behavior of PS. The numerical model, using Abaqus/CAE 6.13, has been validated by comparing the predicted results with load-displacement curves obtained from test data. During steady-state crack propagation, toughness parameters (such as CTOA and CTOD) were found to remain fairly constant at a given temperature. These toughness parameters, however, show an exponential increase with increase in temperature. The present paper offers a plausible approach to numerically analyze fracture behavior of PS at varying temperature using a temperature dependent CZM.